

Flexible Static Scheduling of Software with Logical
Execution Time Constraints

P. Derler, S. Resmerita

Technical Report
May 17, 2010

Software & systems Research Center (SRC)
C. Doppler Laboratory 'Embedded Software Systems'
Univ. Salzburg
5020 Salzburg

Austria, Europe

1

Flexible Static Scheduling of Software with Logical
Execution Time Constraints

Patricia Derler, Stefan Resmerita University of Salzburg
{patricia.derler, stefan.resmerita}@cs.uni-salzburg.at

Abstract—Various programming models for embedded, time-
triggered software employ the logical execution time (LET)
abstraction in order to achieve time- and value-determinism. In
these models, the application software is partitioned into tasks
and a LET is associated with every task. In every execution, a task
reads input values at the beginning of the LET and writes output
values at the end of the LET. To achieve this behavior, existing
implementations of LET models impose execution constraints
where every physical execution of a task must take place between
the corresponding LET bounds. In this paper we investigate a
more efficient implementation paradigm in which LET-based
execution constraints are relaxed by allowing tasks to execute
outside of their LET bounds while preserving their I/O LET
behavior. We present a modified runtime operational semantics
where scheduling operations are decoupled from data transfer
operations. Moreover, we propose a way to statically determine
task release times that may precede LET start times, by using
information about tasks connectivity (available in the LET model)
and about task execution times (required for schedulability
analysis). The consequences of using the relaxed constraints
on the schedulability of the system are explored. We address
sustainability of preemptive scheduling with respect to varia-
tions in release times and propose bounds on such variations
that preserve schedulability for Fixed Priority (FP) scheduling.
Moreover, we describe an application of Dual Priority scheduling
which guarantees schedulability for any release time variation of
a system that is originally FP-schedulable. Relaxing execution
constraints leads to increased processor utilization. Some of the
benefits thereof are illustrated on a typical control application.1

I. INTRODUCTION

Developing complex real time applications requires pro-
gramming disciplines that take into account suitable abstrac-
tions of execution and communication times. The Giotto pro-
gramming model [7] employs the concept of logical execution
time (LET) of a software component (a task), representing a
fixed logical duration for one execution of the task. For a
periodic task, the LET specifies the real time instants when
task inputs and outputs are updated in every execution of the
task. A runtime system performs these I/O actions at the right
times, and also dispatches the task for execution, such that
the execution uses the input values that are available at the

1This work was supported in part by the Embedded Software Research
Center (SRC) of the University of Salzburg, which receives support from
the Christian Doppler Laboratory and in part by the Center for Hybrid
and Embedded Software Systems (CHESS) at UC Berkeley, which receives
support from the National Science Foundation (NSF awards #0720882 (CSR-
EHS: PRET) and #0720841 (CSR-CPS)), the U. S. Army Research Office
(ARO #W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research
(MURI #FA9550-06-0312), the Air Force Research Lab (AFRL), the State
of California Micro Program, and the following companies: Agilent, Bosch,
Lockheed-Martin, National Instruments, and Toyota.

beginning of the LET. Also, the task must issue its outputs
to the runtime system before the end of the task’s LET, when
they are made available to the task’s environment.

The LET concept is used in Giotto successors such as
TDL [12] and HTL [6]. All of these LET-based approaches
offer the same advantages for time-triggered software: First,
the application development process benefits from platform
independence and from a dual separation of concerns: tim-
ing versus functionality and reactivity versus scheduling [5].
Second, the I/O behavior of the application is time and value
deterministic.

For an application with LET specifications and a given
execution platform, a time-safety check must be performed to
decide whether the LET requirements can be met. This check
involves a schedulability analysis, which takes as inputs a
scheduling policy, the worst case execution times (WCETs) of
the application tasks and a set of constraints derived from the
LET specifications. The analysis decides if the task set can be
scheduled such that the LET constraints are satisfied. Existing
implementations of the above mentioned programming model
use conservative constraints, essentially requiring that the total
physical execution of a task takes place within the LET
interval. In other words, the beginning of the LET is the release
time of the task, when the task becomes ready for execution,
and the end of the LET is the latest termination time of the
task.

Figure 1, which can be found in [5] and [12], illustrates the
classical LET view with the I/O semantics and the execution
constraints.

read inputs write outputs

logical view

physical view

Logical Execution Time (LET)

preempt resume

time

release terminate
start finish

Fig. 1. Classical picture: LET defines a maximal physical execution interval

An embedded application (program) consisting of a set of
time-triggered tasks with LET specifications is said to be
schedulable if any run of the program satisfies the LET-
based I/O semantics. Satisfaction of the classic execution
constraints is a sufficient condition for schedulability of the
application. Thus, if no schedule with these constraints can
be found, then nothing can be said about time-safety of
some runs of the program and in practice the application
is declared unschedulable. Note that these constraints are

2

platform independent and reflect a black-box view for a task,
since no information about the internal structure of tasks is
used. Yet the constraints are directly used in a schedulability
analysis that is specific to a scheduling policy and that uses
WCET information, which is usually obtained from a detailed
analysis of task implementations.

This paper describes the conditions under which a task can
be released for execution before the beginning of its LET and
the execution of a task can be completed after the end of the
LET, thus enlarging the time frame for scheduling the task’s
execution, as depicted in Figure 2. Extending the execution
window is based on statically available information about the
tasks. One can release a task T for execution δr units of
time earlier than the beginning of the LET if it is guaranteed
that: (1) Each input port of T accessed during δr has been
updated by the runtime system before being used, and (2) The
value of the corresponding input source does not change from
the moment of the update until the beginning of the LET. A
particular case is when no input port is accessed in the part
of the task executed during δr. Similarly, one can terminate
the task δe units of time later than the end of the LET if it
is guaranteed that no output port of the task is accessed after
the end of the LET.

read inputs write outputs

logical view

physical view

Logical Execution Time (LET)

time

δr δe

release terminate

Fig. 2. Extended time frame for physical execution

The relaxed constraints are relevant for general time-
triggered applications, where a periodic task can have an offset
and the LET may be smaller than the invocation period. We
assume a shared memory communication model between the
runtime system that performs the LET-based I/O and the time-
triggered tasks. Thus, a task has a set of (internal) input ports
implemented as global variables, which are updated by the
runtime system and accessed within the task’s code. Also, a
task has a set of (internal) output ports as global variables,
which are updated by the task during an execution and read
by the runtime system at the end of the LET.

Our approach enables opportunistic executions of time-
triggered tasks, where a well-defined initial part of a task’s
code can be executed before the beginning of the task’s LET,
when the processor would otherwise be idle. This can lead to
the following advantages:
(a) Enlarging the search space for feasible schedules that

achieve time-safety. In particular, an application that is
declared unschedulable under the classical constraints
may become time-safe by using the relaxed constraints.

(b) If the system has high priority event-triggered tasks
that may preempt time-triggered tasks, using the relaxed
constraints reduces the risk of missing LET deadlines or
reduces the number of missed LET deadlines.

(c) If the system has event-triggered tasks executed in the
background, then the response times of such events can

be shorter with the relaxed constraints.
We investigate the effects of using these constraints to-

gether with three preemptive scheduling algorithms: (1) Fixed-
priority (FP) scheduling, (2) Earliest Deadline First (EDF),
and (3) Dual-Priority (DP) scheduling, where every LET-based
task has two fixed priorities: a nominal priority, with which
the task is scheduled inside its LET and a reduced priority,
with which the task is scheduled outside of its LET. An event-
triggered task has one priority, as in FP. Some of the benefits
mentioned above are illustrated by applying the DP scheduling
with relaxed constraints on a standard control application,
showing a 25% decrease in response times of event-triggered
tasks on average, versus the classical constraints with FP
scheduling.

II. BACKGROUND

We consider an embedded software application consisting
of a set of periodic tasks T where timing requirements for the
tasks in T are expressed at the level of the software model by
LETs, using one of the time-triggered languages originated in
Giotto such as TDL, xGiotto, or HTL. In this paper, we focus
on single-mode operation, where all tasks in T are active.

Each time-triggered task T has a period π(T) and a logical
execution time LET (T), which can be placed anywhere
within the period bounds. The beginning of the LET in a pe-
riod is defined by an offset φ(T) such that φ(T)+LET (T) ≤
π(T). The hyperperiod of the system is the least common
multiple of all periods of tasks in T. For every period of time
[i·π(T), (i+1)·π(T)] (i = 0, 1, . . .), the start and end points of
the corresponding LET interval are represented by tiLs(T) =
i · π(T) + φ(T) and tiLe(T) = i · π(T) + φ(T) + LET (T).
Note that [tiLs(T), tiLe(T)] ⊆ [i · π(T), (i + 1) · π(T)]. Let
t−1
Le (T) = 0 by convention.

The application tasks are subject to the usual assumptions:
Tasks do not have internal synchronization points, no task can
suspend itself and any task can be preempted at any time. In
particular, tasks do not communicate directly: every task reads
inputs from designated internal variables called (internal) input
ports and writes computed values to designated local variables
called (internal) output ports.

A. Task Information

We consider that a task’s code is available for structural
and execution time analysis. The types of information that can
be obtained by such analysis can be described by looking at
common structures of code, as follows. Consider the example
shown in Figure 3, where global variables i1, i2 are task input
ports and o is a task output port. Assume that task T has an
associated LET, being part of a timed program (e.g, a Giotto
program, or a TDL program). In existing implementations of
such timed programs, the software task is regarded as a black
box - Figure 3(a): all its inputs are read at the beginning
and all its outputs are updated at the end of every execution,
leading to restrictive execution constraints: the task is released
for execution no earlier than the beginning of the LET and it
is terminated no later than the end of the LET.

3

δ
1

T_Impl(){
 initialize();
 readState();
 ...
 v1 = i1 + ...
 ...
 v2 = i2 + ...
 ...
 o = ...
 computeState();
}

δ
2

δ
3

Task T

i1

i2

o

(a) (b)

T_Impl(){
 counter++;
 if (counter%2 == 0){
 ...
 v2 = i2 + ...
 ...
 o = ...
 ...
 }
 ...
}

(c)

Fig. 3. Examples of task implementations

Figure 3(b) shows a possible task implementation where δ1
is the minimum execution time between the beginning of the
task and any access to any input port (assuming that variable i1
is the first input port to be used in any execution of the task), δ2
is the minimum execution time between the beginning of the
task and the first access to i2, and δ3 is the minimum execution
time between the last access to any output port and the end
of the task. These minimum delays can be used to determine
which parts of the task’s code can be executed outside of the
LET.

Figure 3(c) shows another example, where the code of the
if block is executed every second invocation of the task. If
the ports i2 and o are accessed only within that block, then
we know that i2 need not be updated by the runtime system
in invocations 1, 3, 5, . . . of the task, and that o has a constant
value during the even periods of the task.

In some cases one can statically determine time intervals
within which input values for a task remain constant. In
general, we distinguish among two types of predictable input
sources for time-triggered tasks in a LET-based system: LET-
based time-triggered tasks and event-triggered tasks. For LET-
based time-triggered tasks the time when outputs are updated
is the end of the LET. In the case of event-triggered tasks
one can sometimes specify a minimum time period between
consecutive occurrences of an event. If the event is triggered by
computational tasks, this minimum inter-arrival time is based
on timing predictability of software executions, as described
above. If the event is triggered by a change in value of a phys-
ical parameter in a control system, one can use the model of
the physical environment to predict the inter-arrival bound. For
example, consider a heater/cooler control application, where a
temperature sensor with hysteresis is used. The maximum rate
of temperature change at the sensor’s location in the controlled
space and the sensor’s hysteresis determine a minimum time
period between consecutive changes in the sensor’s output.

Another type of information that can be used to obtain flex-
ible execution constraints at compile time refers to parameters
of the scheduler. An example in this respect is a fixed-priority
preemptive scheduling with deadline-monotonic prioritization,
where task priorities are known at compile time.

B. LET-Based Operational Semantics

We assume the existence of a runtime system which exe-
cutes three main types of operations related to the tasks in T
(in the absence of multiple modes):

• Updating task outputs and actuators: A visible output of a
task is a variable of the runtime system that corresponds
to an internal output port of the task and is updated at
the end of the task’s LET with the value of the internal
output port. An actuator update is a value transfer from
a task output to an actuator device.

• Updating input ports: The runtime system updates a
tasks’ input ports with values from outputs of other
tasks or from the physical environment. Values from the
physical environment are obtained by using platform-
specific components (drivers), which are called by the
runtime system to retrieve sensor data. Thus, a task’s
input port has an associated input source, which is either
a visible task output or a sensor.

• Releasing time-triggered tasks for execution: The runtime
system is responsible for activating a time-triggered task,
i.e., setting the task to be ready for execution. Once the
task is released, the underlying scheduler is responsible
for allocating the CPU to the task.

Each time-triggered programming language defines a
discrete-time operational semantics, specifying the sequence
of operations that have to be executed by the runtime system at
every time step. This sequence, also called the timing program
or top-level schedule is created by compiling the timing
specifications. At runtime the timing program is executed
every hyperperiod. A particular characteristic of existing LET-
based operational semantics is grouping the update of a task’s
inputs with the release of the task into one common operation,
sometimes called task invocation. This implies that the LET
behavior is achieved only if every task execution is released
exactly at tiLs(T), which is an execution constraint.

Our aim is to relax this constraint, by allowing an interval
of release times for a task execution, that ends at tiLs(T). The
start of this interval is computed based on various information
about the application, platform and scheduler. We assume that
the communication between the runtime system and each task
is achieved by shared memory, i.e., task input and output ports
are global variables. We consider each update of an input port
as a distinct operation, which can be guarded. Thus, for the
same task execution, the beginning of the LET, the time step
when the task is released, and the moment when an input port
is updated, can all be distinct.

We propose a modified operational semantics that specifies
fixed time steps for data transfer in terms of the LET end-
points, while replacing specification of precise time steps for
task releases with a requirement expressed in terms of system
behavior. The exact time steps for task releases are determined
during compilation, such that the release requirement is satis-
fied. Thus, the release times are fixed in the timing program.
The modified operational semantics presented below describes
only operations that affect task scheduling; other operations
(such as actuator updates, checking guards, etc.) are the same
as in the classical semantics. For each time-triggered task T,
the following operations are defined:

(O1) Every visible output port of T is updated with the value
of the corresponding (internal) output port at tiLe(T).

(O2) Every input port of T that is connected to a sensor is

4

updated at tiLs(T).
(O3) Each input port of T that is connected to an output of

a task U is updated at tiLe(T) if tiLs(T) ≤ tjLe(U) ≤
tiLe(T) and at tjLe(U) otherwise (∀i, j = 0, 1, . . .). Thus,
an input of T is updated each time its source value is
modified, except when that time is within a LET interval
of T , when the input must stay unchanged. If the source
value is modified within the LET of T , the input update
at the end of T ’s LET ensures that the last modification
of the source is reflected in T ’s input.

(O4) The task T is released for its i-th execution at a time tir(T)
with ti−1

Le (T) ≤ tir(T) ≤ tiLs(T) such that no input port
connected to a sensor is accessed earlier than tiLs(T) and
for any other input port used by T at any time t < tiLs(T)
the value of the corresponding input source at time t is
equal to the value of the same source at time tiLs(T). This
allows for tir(T) < tiLs(T) if sources of input values used
before tiLs(T) remain constant at least until tiLs(T).

C. LET Compliant Runs

The set of input ports of task T is denoted by PIN(T)
and the set of output ports is denoted by POUT(T). Each
output port q (which is a variable updated by the task) has a
correspondent variable called visible output port, denoted by
q̃, which is maintained by the runtime system. Every input
port p is connected to a source, referred to as sp, which can
be a visible output port of some task or a sensor. The value of
a variable a at time t is denoted by v(a, t), where a can be an
input port, an output port, a visible output port, or a sensor.

An execution trace of task T is a (possibly infinite) sequence
of executions indexed by i = 0, 1, 2, . . ., where the ith execu-
tion corresponds to the period of time [i ·π(T), (i+1) ·π(T)]
and every execution starts after the termination of the previous
execution. We use V i(p) to represent the set of all values read
from input port p of T during the ith execution of T . The
termination time of the ith execution of T is denoted by tit(T).
A run of the embedded software application is a collection of
execution traces, one for each task in T.

Definition 2.1: A run of the application is LET-compliant,
if for every task T ∈ T, every execution i = 0, 1, . . ., of the
execution trace of T is such that:

(i)∀p ∈ PIN(T), V i (p) =
{
v
(
sp, t

i
Ls(T)

)}
and

(ii)∀q ∈ POUT(T),

(a) v(q̃, tiLe(T)) = v(q, tiLe(T))

(b) ∀t ∈
[
tiLe(T), ti+1

Le (T)
)
, v (q̃, t) = v

(
q̃, tiLe(T)

)
(iii) if tit(T) ≥ tiLe(T), then ∀q ∈ POUT(T),

∀t ∈
[
tiLe(T), tit(T)

)
, v (q, t) = v

(
q, tiLe(T)

)
Point (i) means that all values read from an input port during
an execution must be equal to the value of the input source at
the time of the LET start. Relation (ii)(a) holds if every visible
output port is updated with the value of the corresponding
output port at tiLe(T), while (ii)(b) says that the value of a
visible output port must stay unchanged between consecutive
LET ends. Point (iii) states that if an execution exceeds

tiLe(T), then no value of an output port may be updated during
the part of the execution which takes place after tiLe(T).

For simplicity of presentation, in the formal results of this
paper we will keep the classical termination constraint - a task
must finish execution by the end of its LET - and focus on
the relaxation of the release time constraints.

One can show that the modified operational semantics
defined in Section II-B leads to correct I/O timing behavior of
the application.

Theorem 2.2: Any run of the embedded application in con-
junction with a runtime system that implements the operations
O1-O4 defined in Section II-B, where every execution of a
task terminates before the corresponding LET end, is LET-
compliant.

Proof: The proof is a simple check of the properties given
in Definition 2.1. Taking them in reverse order, note that (iii)
is eliminated by hypothesis and (ii) holds due to operation
(O1). It remains to show that (i) holds. To this end, let tir(T)
be the release time of the ith execution of T , with ti−1

Le (T) ≤
tir(T) ≤ tiLs(T) and take any input port p of T . If the source
of p, denoted by sp, is a sensor, then operation (O2) ensures
that p is updated only once in every execution of T , at tiLs(T),
while (O4) chooses a release time such that p is not accessed
before tiLs(T). Thus V i (p) =

{
v
(
sp, t

i
Ls(T)

)}
for all i =

0, 1, . . .
If sp is a visible output port of some task U ∈ T, then

according to (O1), sp is updated only at the LET end of U . By
(O3), the value of p is updated with the value of sp whenever
sp changes, except when this is included in a LET interval
of T . At the end of T ’s LET, p receives the last value of sp
updated during T ’s LET. This implies that the value of p used
by T during the LET of T is v(sp, tiLs(T)). Consider now
that p is accessed at a time tp < tiLs(T). By (O4), tir(T) was
chosen such that v(sp, tp) = v(sp, tiLs(T)). Note that tp ≥
tir(T) ≥ ti−1

Le (T) and operation (O3) ensures that at tp the port
p is updated with the latest value of sp: v(p, tp) = v(sp, tp).
It follows that v(p, tp) = v(sp, tiLs(T)) for any access time
tp ∈ [tir(T), tiLe(T)].

Corollary 2.3: Any run of a schedulable embedded appli-
cation with classical LET-based operational semantics is LET-
compliant.

Proof: It can be readily seen that the release operation
in the classical semantics is a particular case of (O4), when
tir(T) = tiLs(T), and that under this circumstance updating
all inputs at tiLs(T) (before releasing the task) has the same
effects as (O3) and (O2). Then the statement follows imme-
diately from the above theorem.

For the remaining of this paper we assume existence of
a runtime system that executes operations (O1) − (O4) at
statically determined times, and we investigate the situation
where release times determined for step (O4) are smaller
than the corresponding LET start times. First, we describe one
way of generating these release times such that the conditions
of (O4) are satisfied. Second, we explore the consequences
of extending the execution window on the schedulability of
the system. Third, we evaluate the proposed approach on a
common control system.

5

III. LET-BASED STATIC RELEASE TIMES

This section describes a method for computing early release
times based on information about task connectivity (available
at the model level) and execution times of code segments
(provided by some execution time analysis). The formal pre-
sentation is preceded by an illustration of the main ideas on
simple examples.

A. Examples

Consider a LET-based task T and assume, for simplicity,
that T has only one execution path. For an input port p of
task T , we denote by δ(T, p) the minimum execution time of
T ’s code segment from the beginning until the line of code
where p is accessed for the first time. The input ports of T
can be grouped in two categories, as follows.

1) Inputs from sensors: Consider the implementation
sketched in Figure 4(a), where p is the first input port read
by T . Assume that p is connected to a sensor. Notice that T
can be released at time tr = tLs(T) − δ(T, p), as depicted
in Figure 4(b), without violating the I/O behavior given by
the LET specification: at the time when p is accessed in the
execution, p has the value of the sensor at the beginning of
the LET interval.

Time

TT (...) {
 ...
 ... = p ...
 ...
}

δ (T, p)

tr tLs(T)

(a) (b)

δ (T, p)

T

logical
physical

Fig. 4. Task T reads from a sensor

2) Inputs from time-triggered tasks: Assume now that T
reads from ports p1 and p2, which are connected to visible out-
put ports of two LET-based tasks T1 and T2, respectively (see
Figure 5(a)). In this case, a release time which satisfies the
conditions of (O4) is tr = max{tLe(T1)−δ(T, p1), tLe(T2)−
δ(T, p2)}. This is illustrated in Figure 5(b) for a specific
placement of LETs. Note that operation (O3) ensures that
p1 and p2 are updated with the values of their corresponding
sources at the LET ends of T1 and T2, respectively.

T

T1

T2

T (...) {
 ...
 ... = p1 ...
 ...
 ... = p2 ...
 ...
}

δ (T, p2)

δ (T , p1)

T2

T1

δ (T, p1)

Time

δ (T , p2)

tr

(a) (b)

T

logical view
physical view

Fig. 5. Task T reads from two time-triggered tasks

B. Computing release times

Let us first formally specify the required task timing infor-
mation, as follows. The control flow graph (CFG) of task T is
a directed acyclic graph representing all the possible execution
paths of T . CFG is commonly used in timing analysis based
on abstract interpretation and path analysis [1]. Let GT be the
CFG of T with every loop unrolled exactly once. For a path

xT in GT and an input port p of T we denote by δ(xT , p) the
minimum execution time of the prefix of xT up to the place
where p is first accessed. If there is no access to p in xT , then
δ(xT , p) =∞ by convention. Let:

δ(T, p) = min{δ(xT , p)|xT ∈ GT }
δ(T, PS) = min{δ(T, p)|p ∈ PIN(T), sp is a sensor}

For any task U ∈ T, we take the latest end of a U ’s LET that
precedes tiLs(T) as:

tρ,iLe(U, T) =

0 , if t0Le(U) > tiLs(T)

maxj=0,1,...

{
tjLe(U) | tjLe(U) ≤ tiLs(T)

}
,

otherwise

Note that tρ,iLe(T, T) = ti−1
Le (T). The set of all inputs of T

connected to visible outputs of U,U 6= T , is denoted by:

PU (T) = {p ∈ PIN(T) | sp is a visible output of U}

Now we can define the minimum execution time of the initial
code segment of T until reading the first input from U :

δ(T, PU) =

{
min{δ(T, p)|p ∈ PU (T)} , if PU (T) 6= ∅
+∞ , otherwise

By convention, we consider δ(T, PT) = 0.
For any task T ∈ T take the release time of the i-th

execution of T (i = 0, 1, . . .) as follows:

tir(T) = max
{

0, tiLs(T)− δ(T, PS),

max
U∈T

{
tρ,iLe(U, T)− δ(T, PU)

}} (1)

Theorem 3.1: Any run of the embedded application in
conjunction with a runtime system that implements operations
(O1) - (O3), where every execution i = 0, 1, . . . of any task T
is released at the time tir(T) given by relation 1 and terminates
before tiLe(T), is LET-compliant.

Proof: We need to show that the conditions of operation
(O4) are satisfied. First, note that tir(T) ≥ tρ,iLe(T, T) −
δ(T, PT) = ti−1

Le (T). Also, since tρ,iLe(U, T) ≤ tiLs(T) for any
U , it follows that tir(T) ≤ tiLs(T).

Let p be any input port connected to a sensor. From relation
1, we have that tir(T) ≥ tiLs(T)− δ(T, p) which is equivalent
to tir(T) + δ(T, p) ≥ tiLs(T). Note that tir(T) + δ(T, p) is
the earliest possible time at which p can be accessed during
the ith execution of T . Thus, no input port updated from a
sensor is accessed before tiLs(T). Now take any input port p
of T connected to a visible output sp of some other task U ,
and assume that T reads from p at a time tp < tiLs(T). We
have tp ≥ tir(T) + δ(T, p) ≥ tir(T) + δ(T, PU) ≥ tρ,iLe(U, T).
According to operation (O1), the last update of the source sp
before tiLs(T) happens at time ts = tρ,iLe(U, T). Consequently,
since tp ≥ ts, the value of the source of p does not change
between tp and tiLs(T). We conclude that all conditions of
(O4) are satisfied for every task execution, hence by Theorem
2.2 the run is LET-compliant.

6

IV. SCHEDULABILITY ANALYSIS

Schedulability testing for a system with modified release
times may be harder than for classical release times, due to
loss of periodicity in the task model. Thus, it is of interest
to investigate conditions under which schedulability of the
original system is retained when shifting release times to the
left. This property is called scheduling sustainability in [2],
where it is shown that the earliest deadline first (EDF) policy
is sustainable with respect to release times. Thus, if the original
LET-based system is schedulable under EDF, then the release
times given by relation 1 can be used without jeopardizing
schedulability.

In this section, we examine consequences of release time
changes for two types of preemptive uniprocessor scheduling
policies: fixed task-level priority (FP) and fixed job-level
priority. FP is widely used in the embedded systems industry
due to its predictability. In a fixed job-level priority scheme,
distinct jobs of the same task may have different priorities, but
the priority of each job is constant.

We consider a scheduling task model where each task T ∈
T is associated to a collection of jobs J (T) = {xi(T) =
(ri(T), ci(T), di(T))}i≥1, where ri denotes the release time
(ready time), ci is the execution time, and di is the deadline of
the i-th job of task T . Note that the term job in the scheduling
context is related to the term execution in the LET context. The
collection of all task jobs is J =

⋃
T∈T J (T). We assume

that jobs of the same task are non-trivial and do not overlap in
time, i.e., di−1(T) ≤ ri(T) < di(T). Moreover, all jobs in J
are independent. In the standard task model for schedulability
checking of LET-based systems, jobs are defined as follows:
ri(T) = tiLs(T), ci(T) = WCET (T), and di(T) = tiLe(T).

We need to examine a modified job set J ′ =
⋃
T∈T J ′(T),

where J ′(T) = {x′i(T) = (r′i(T), ci(T), di(T))}i≥1 such that
di−1(T) ≤ r′i(T) ≤ ri(T). For a job xi(T), the time interval
[ri(T), di(T)] is referred to as the execution interval of xi(T)
in J (T). A sufficient condition of schedulability invariance
under preemptive policies is given next.

Theorem 4.1: If a job set J is schedulable by a preemptive
policy, then the set of modified jobs J ′ is schedulable by any
preemptive policy which introduces no new preemption points
in the execution intervals of J .

Proof: Take any job of some task T in the modified sys-
tem: x′i(T) ∈ J ′(T). Under a scheduling policy which does
not create new preemption points in the execution intervals of
J , any task that preempts the execution of T in the interval
[ri(T), di(T)] in the modified system also preempts the exe-
cution of T in the same interval in the original system. This,
together with the fact that [ri(T), di(T)] ⊆ [r′i(T), di(T)],
implies that the amount of time available for T ’s execution
in [r′i(T), di(T)] in the modified case is at least as large as
the amount of time available to T in [ri(T), di(T)] in the
original case. Hence, the modified system is schedulable.

Let us discuss in our context the example ([2], Example 1),
which was used to show that the Leung and Whitehead test for
fixed priority scheduling [10] is not sustainable with respect
to the type of change considered here. Consider a periodic
task system with two tasks T1 and T2 where T1 has higher

priority, ri(T1) = 0.5 + 2 · (i− 1), ci(T1) = 1, di(T1) = 2 · i,
and ri(T2) = 3 · (i − 1), ci(T2) = 1.5, di(T2) = 3 · i. As
described in [2], this system becomes unschedulable if all
jobs of T1 are shifted to the left by 0.5 units of time, that
is r′i(T1) = ri(T1)− 0.5. In fact, schedulability is lost for any
value of the shifting. However, this seems to be a consequence
of the constraint that the modified system must be periodic
(all jobs must suffer the same change). We allow independent
job changes, where periodicity may be lost but schedulability
can be maintained. In this example, one can readily see
that the modified system with r′3k+1(T1) = r3k+1(T1) − 0.5
and r′3(k+1) = r3(k+1)(T1)−0.5 (for all k = 0, 1, ...) is FP
schedulable - notice that no new preemption point is created.
Moreover, any change of r3k+2 (for any k = 0, 1, . . .)
leads to loss of schedulability - incidentally, such a change
would create a new preemption point in the execution interval
[r3k+1(T2), d3k+1(T2)].

Theorem 4.1 can be used to determine release time changes
which are acceptable from a schedulability viewpoint. Alter-
natively, schedulability can be retained under given changed
release times by suitably setting scheduling parameters such
that this condition is satisfied. These cases are elaborated upon
in the next two subsections.

A. Task-Level Fixed-Priority

One can determine release times that guarantee preservation
of schedulability under FP as follows. Let lp(T) denote
the set of tasks with lower priorities than T . For every
job (ri(T), ci(T), di(T)) ∈ J (T), define the modified job
(r′i(T), ci(T), di(T)) with

r′i(T) =

ri(T) , if ∃T̃ ∈ lp(T) and xk ∈ J (T̃) s.t.

ri(T) ∈ [rk(T̃), dk(T̃)]
maxT̃∈lp(T){dk(T̃)|xk ∈ J (T̃) and dk(T̃) ≤ ri(T)},

otherwise.
(2)

According to the relation 2, a release time must remain
unchanged if it falls into an execution interval of a lower
priority task. Otherwise, the release time can be decreased
to the last preceding deadline of all lower priority jobs. It can
be readily seen that this introduces no additional preemption
points inside the original execution intervals under FP, hence
by Theorem 4.1 schedulability is not compromised.

For LET-based systems with FP scheduling, it is sufficient
to take as release times the maximum between relation 1 and
relation 2 to guarantee both the LET I/O semantics and the
schedulability of the system.

B. Job-Level Fixed-Priority

Consider a job set J that is schedulable by some scheduling
policy which assigns a priority to each job. We assume that
priorities are drawn from a finite set. Each job is subject
to a change in release time, leading to a modified set J ′.
The problem is to find a scheduling policy that ensures
schedulability of J ′. We address this problem by proposing
a scheduling policy derived from the original one, but which
allows a job to execute with two priorities: a nominal priority,

7

which is the one given by the original policy, and a dual
priority. For every job x ∈ J ′, the dual priority of x is
an arbitrary priority that is lower than the nominal priorities
of all the other jobs. This is an application of Dual Priority
(DP) scheduling [3] that ensures conservation of schedulability
under any given shifting to the left of release times, which is
achieved by setting parameters of the scheduling algorithm,
instead of restricting release times.

At runtime, the dual priority is assigned to the part of x
which is executed outside the execution interval of x in J ,
while the nominal priority is assigned to the part which is
executed inside the original execution interval of x. More
precisely, when jobs in J ′ are executed, the DP scheduler
sets the priority of job xi to the dual value at time r′i (the
release time) and then upgrades the priority to the nominal
value at time ri. If r′i = ri, then only the nominal priority is
used.

Theorem 4.2: If a job set J is schedulable by a job-level
fixed-priority preemptive policy, then any job set J ′ obtained
by shifting release times of jobs in J to the left is schedulable
by the DP algorithm.

Proof: It can be readily seen that DP introduces no
new preemption points. Hence, by Theorem 4.1, the modified
system is DP-schedulable.

Note that DP can be used when the original scheduling is
FP, where all priorities are known a priori. If the modified
release times are statically determined, then the points in time
where priorities are changed are statically defined. In this
case, the DP scheduling policy proposed here offers the same
predictability as FP.

Consider an application with mixed time-/event-triggered
tasks where the periodic tasks are LET-based and scheduled by
FP, and event-triggered tasks are executed in the background.
More precisely, all event-triggered task have one low priority
and they are executed in FIFO order of their arrival times. In
this case, one can show that by introducing the release margins
given by relation 1 for the LET-based tasks and by using a
DP scheduler, response times of event-triggered tasks in the
system may be decreased (and are never increased). We take
the dual priority of each LET-based task as an arbitrary priority
that is lower than the priority of the event-triggered tasks. For
simplicity, assume a suitable buffering of pending events such
that every event is eventually processed.

Theorem 4.3: In a mixed time-/event-triggered systems
where event-triggered tasks have a lower priority than LET-
based tasks and are executed in FIFO order, the response times
of event-triggered tasks under DP with flexible constraints are
not larger than in the case of FP scheduling with classical
constraints.

Proof: Since the priority of any event task is higher than
the dual priority of any LET-task, if a LET-based task is in
execution at a time t outside of the task’s LET, then there
is no pending request for an event-triggered task at t. Also,
events are processed in the same order in both cases. Hence, no
outside-LET execution can increase response times of event-
triggered tasks.
The next section describes an application where response times

of event tasks become significantly smaller when shifting
release times to the left.

V. APPLICATION EXAMPLE

The magnitude of improvement that can be achieved by
using our approach is application dependant. While generic
examples can be easily constructed to demonstrate the ben-
efits described in Section I, it is important to consider real
applications in this respect.

We present here an evaluation of the impact of using flexible
execution constraints on the behavior of a common control ap-
plication: the inverted pendulum control system. The top-level
Simulink model, obtained from the official Matlab/Simulink
Demo Library, is shown in Figure 6. The control application
has one event-triggered and two time-triggered components,
from which C code was generated with Matlab’s Real Time
Workshop. Then the software was optimized for memory and
response time. The code was compiled for the NEC V850
processor, and the execution time estimator a3 from AbsInt
[1] was used to obtain the relevant execution time information.
A processor clock of 25MHz was assumed. The original
application is scheduled with FP scheduling, with priorities
given by the rate monotonic policy. The task properties are
summarized in Table I, where the timing of the event task (the
sensor task) is given in terms of the interval of inter-arrival
times τ and relative deadline D. The table also shows the
minimum and maximum execution times of the tasks: BCET
and WCET, respectively.

Fig. 6. The Simulink model of the inverted pendulum control system

TABLE I
TASK PARAMETERS

Property Computation Filter Sensor
Priority 1 2 3
Timing(in ms) LET = 4, φ = 0,

π = 5
LET = 5, φ = 2,
π = 5

τ = [10, 20],
D = 8

BCET/WCET 1.18/2.1 1.95/2.05 1.53/1.75
δ (input ports 0.5 (filter) 0.31 (any input)
access times) 1.24 (sensor)

The timing of an execution was simulated over an interval
of 100 seconds, with execution times of tasks and event arrival
times chosen randomly with normal distribution between the
given bounds, under an FP scheduling with standard execution
bounds and under DP scheduling with flexible execution
bounds given by relation 1. Figure 7 shows the response
times of the event-triggered task in the simulation interval [0,
1000ms] for the two scheduling variants, as well as statistics
for the entire simulation time.

8

Fig. 7. Event response times with classical and flexible constraints

The graph shows that response times with classical execu-
tion constraints are always higher than the response times with
flexible execution constraints. For this application, the mean
response times are decreased by 25%.

VI. CONCLUSIONS AND RELATED WORK

In this work we propose and analyze a more efficient way
of scheduling LET-based tasks by taking into consideration
execution times of tasks and dependencies between tasks.
This approach enables a flexible execution of tasks without
changing the observable system behavior as specified by the
LET requirements. The main price that has to be paid is losing
portability of the timed program. However, this is compensated
by the possibility to fully automatize the compilation process.
A compiler can take into account platform specific information
to generate the release margins. If such information is not
available, then the compiler yields the classical constraints.

Clearly, one can make an implementation more efficient by
using more information about the platform and the application.
The main concern of this paper is to point out the main sources
of information and to explore the consequences of modifying
the existing operational semantics of the LET model on the
schedulability of the system. In this respect, we provide a
sufficient condition for sustainability of preemptive scheduling
with respect to release time changes. For FP scheduling,
we give bounds on these changes for which the condition
is satisfied. Moreover, we present a dual priority scheduling
algorithm that guarantees schedulability of any variation of a
system that is schedulable by a job-level fixed priority scheme.

Further work along the same lines needs to be done in rela-
tion to multi-mode LET systems, other scheduling algorithms,
and other cases of mixed time-event triggered systems.

In related work, the authors of [8] briefly mention that a
task can be released earlier than the LET if all its inputs are
available, a concrete example being given in [9]. We add to
that the observation that a task can be released even if its inputs
are not available, if it is guaranteed that no input is accessed
in the execution before the beginning of the LET. This is a
property of the task in isolation and can be employed even if
the task’s environment is unpredictable. One can propose other,
more intrusive approaches to increase processor utilization. For
example, a task can be released earlier, execute initial code and

then voluntarily suspend itself until the beginning of its LET.
This is a form of cooperative scheduling [11].

Taking into account internal task structure has been shown
to improve scheduling margins. A language where timing
semantics is based solely on observable events was proposed
in [4]. Observable events are send and receive actions. Timing
requirements are placed only on the send and receive actions
and the unobservable code can be transformed to support low-
level tuning of the scheduling algorithm. A task is split such
that code, which does not contain observable events is put
into a separate task and can be scheduled later. More closely
related to this paper is the study of sustainable scheduling
presented in [2], which focuses on sustainability of scheduling
tests. In our work, we address the weaker requirement that
a task system deemed schedulable remains so with ”better”
parameters, in the context of preemptive policies and smaller
release times. The Dual Priority approach was proposed in
[3] as a way to increase system utility for fixed task-level
priorities. Here, we specify the promotion times (relative times
when priorities are upgraded) such that the LET I/O semantics
and the schedulability of the system are preserved. The type
of mixed time/event-triggered applications analyzed in Section
IV-B and illustrated in Section VI are direct applications of
DP, making use of three bands of priority levels.

REFERENCES

[1] aiT worst-case execution time analyzers. http://www.absint.com/ait/,
2009.

[2] A. Burns and S. Baruah. Sustainability in real-time scheduling. Journal
of Computing Science and Engineering, 2(1):74–97, 2008.

[3] A. Burns and A. J. Wellings. Dual priority assignment: A practical
method for increasing processor utilization, 1993.

[4] Richard Gerber and Seongsoo Hong. Semantics-based compiler trans-
formations for enhanced schedulability. In Proceedings IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 1993.

[5] Arkadeb Ghosal, Tom Henzinger, Christoph Kirsch, and Marco Sanvido.
Event-driven programming with logical execution times. In George Alur,
Rajeev; Pappas, editor, Proceedings of the 7th International Workshop,
Hybrid Systems Computation and Control, March 2004.

[6] Arkadeb Ghosal, Alberto Sangiovanni-Vincentelli, Christoph M. Kirsch,
Thomas A. Henzinger, and Daniel Iercan. A hierarchical coordination
language for interacting real-time tasks. In EMSOFT ’06: Proceedings of
the 6th ACM & IEEE International conference on Embedded software,
pages 132–141, New York, NY, USA, 2006. ACM.

[7] Thomas A. Henzinger, Christoph M. Kirsch, and Slobodan Matic.
Composable code generation for distributed giotto. SIGPLAN Not.,
40(7):21–30, 2005.

[8] Tom Henzinger, Christoph Kirsch, Rupak Majumdar, and Slobodan
Matic. Time-safety checking for embedded programs. In Proceedings
of the Second International Workshop on Embedded Software. Lecture
Notes in Computer Science, Springer-Verlag,, January 2002.

[9] Benjamin Horowitz. Giotto : a time-triggered language for embedded
programming. PhD thesis, University of California, Berkeley, 2003.

[10] J. Y. T. Leung and J. Whitehead. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Evaluation, 2:237–
250, 1982.

[11] Stefan Poledna, Th. Mocken, J. Schiemann, and Th. Beck. Ercos: An
operating system for automotive applications. Research Report 21/1996,
Technische Universität Wien, Institut für Technische Informatik, Treitl-
str. 1-3/182-1, 1040 Vienna, Austria, 1996.

[12] Wolfgang Pree and Josef Templ. Modeling with the timing definition
language (TDL). Model-Driven Development of Reliable Automotive
Services: Second Automotive Software Workshop, ASWSD 2006, San
Diego, CA, USA, March 15-17, 2006, Revised Selected Papers, pages
133–144, 2008.

