
Towards Efficient Use of Shared Communication Media in the Timed Model

Guido Menkhaus, Michael Holzmann, Sebastian Fischmeister, Claudiu Farcas
Computer Science Department, University of Salzburg, Austria

{firstname. lastname}@cs.uni-salzburg.at

Abstract

Embedded computers are increasingly tighter integrated
with each other forming distributed embedded systems that
interact through a shared communication medium. Often
these embedded systems perform services for safety-critical
operations that require deterministic computation and pre-
dictable communication. However, since these systems are
embedded, they must cope with limited resources. One fun-
damental challenge is to make efficient use of the shared
communication medium, especially in the timed model, in
which communication tends to cumulate at the end of har-
monic periods of tasks.

In this article, we present an approach that uses Micro-
tasks for splitting computation and communication into sev-
eral sequentially executed steps to allow for better balanced
load on the communication medium in the timed model.
We discuss the approach and describe its implementation
in OSEK/Works with TTCAN.

1. Introduction

Most modern control applications are implemented in
software. It is therefore necessary to understand the dif-
ferent role of time from the perspective of software and
control engineering [20]. The control engineering perspec-
tive is that processes evolve in continuous real-time, delays
are small and jitter is negligible. From the perspective of
software engineering, a set of tasks needs to be scheduled
and time evolves discontinuously, since time elapses for a
task only when it is active and running. Each task has a re-
lease time, a hard deadline and a worst-case execution time
(WCET). Often, the deadline of a task equals the respec-
tive period of the task.

Jitter is defined astime-related, abrupt, spurious varia-
tions in the duration of any specified related interval[1].
Start jitter of a task is the time variation around the period
of a task reading its inputs. Completion jitter of a task is the
time variation around the period of a task completion point
when updating its outputs. Start and completion jitter may
lead to vacant sampling and sample rejection [23]. Sam-
ple rejection means that an input value of a task is obtained

more than once between two consecutive release times of
the task. Vacant sampling means that a new input value to a
task is not available between two consecutive releases of a
task and that an obsolete value is repeatedly used. Start and
completion jitter of a task is due to the non-synchronicity
of two data-dependent tasks. Apart from sample rejection
and vacant sampling, severe jitter can degrade system per-
formance [7].

The effects of start and completion jitter of a task are di-
minished by introducing the logical execution time (LET)
of a task in the timed model [2][3][13]. In the timed model,
the start of the LET marks the point in time when the in-
put values are read. The end of the LET marks the point in
time when the results of the computation of a task become
available to other tasks or actuators. Even if the output of a
task becomes available before the end of the LET, the out-
put values will not be released prior to the expiration of the
LET. The LET of a task is always greater or equal than the
sum of the WCET and the worst-case communication time
(WCCT); the WCCT is greater than zero in case values need
to be transmitted to a different computational node in a dis-
tributed application. The concept of LET allows for precise
synchronization of tasks for central and distributed applica-
tions. However, it disregards code efficiency and system re-
activity, which results in unnecessary actuator updates and
communication delays. In a distributed hard real-time appli-
cation in which time-triggered and cyclicly executed tasks
on different computational nodes need to exchange values
over a network, applying the timed model leads to unbal-
anced network load [18]. The timed computation model de-
fines the communication activities for each task to occur at
the end of the LET. Since the periods of all tasks of an ap-
plication start simultaneously at the beginning of the hyper
period, there is a peak in computation (higher CPU load)
at the beginning of the hyper period, whereas communica-
tion (network traffic) dominates at the end of the period.

In this article, we present an approach for balanced net-
work load for the timed model. To balance the CPU and
the network load and to distribute it equally over the hy-
per period, we introduce Micro-tasks. Micro-tasks define a
sequence of executing tasks. They allow for communicat-
ing task results over a network regardless of the fact that
from a semantic point of view outputs are only available at
the end of the LET of a task. Micro-tasks split the com-

Sebastian
Text Box
 In Proc. of the 11th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'05). IEEE Press, 2005.

putation of a task into a set of Micro-tasks and execute
actuator updates intertwined with the invocation of those
Micro-tasks [8] thereby allowing for the fine grained control
of software tasks and their distributed interaction. We dis-
cuss an infrastructure for distributed hard real-time applica-
tions that bases on the Timing Definition Language (TDL)
in which the computation of tasks and the communication
of messages is controlled by a virtual machine.

The remainder of the article is structured as follows:
Section 2 gives a short overview of concepts of the timed
model. Related work is discussed in Section 3. Commu-
nication and efficient computation with Micro-tasks is in-
troduced in Section 4. An overview over the TDL infras-
tructure for distributed real-time applications is given in
Section 5. Section 6 presents the implementation of the
TDL virtual execution environment on OSEK/Works and
the TDL communication system is discussed in Section 7.
Section 8 presents results and the article closes with a con-
clusion in Section 9.

2. Short Overview of Concepts for the Imple-
mentation of the Timed Model

The concept of languages representing the timed model
bases on time-triggered cyclic computation and communi-
cation. The LET describes the timing behavior of a task.
It denotes the invocation period, i.e. its relative release
time and the deadline of a task. According to a scheduling
scheme, the task starts after it has been released at the be-
ginning of the LET and is active afterwards and completes
its execution before the LET has elapsed. A communication
schedule defines when the communication system transfers
values from one computational node to another and when
the next transmission will take place.

Timing Definition Language.The Timing Definition Lan-
guage (TDL) is a software description language intended
for timed computation. TDL allows for defining the timing
behavior of a set of task [22]. It separates the timing con-
straints of an applications from the functional implementa-
tion, which must be provided separately, for example, using
an imperative programming language such as C.

The most important programming abstractions of TDL
are modules, modes, tasks, and ports: A module declares a
set of modes. A mode defines a set of task, actuator, and
mode switch invocations that are executed periodically and
concurrently. A TDL module can only be in one mode at a
time, but can change from one mode to another at the end
of a mode period. A TDL mode specifies the period, i.e.,
the length of one computation cycle. A task period is de-
termined with respect to the execution period of the mode
to which the task is assigned (by dividing the period of the
mode by the task frequency). A task has a set of input ports,
output ports and a set of drivers reading and writing data
from and to the ports. Ports are logical points of intercon-
nection between tasks, modes, and modules. Drivers copy

values between task input and output ports, read sensors,
and update actuator. Mode drivers read sensors and update
mode ports, which are a subset of the task output ports.

The communication subsystem ensures the timely trans-
mission of values from one computational node to another.
In a distributed application, in which a task on one compu-
tational node transmits its results to remote tasks, tasks out-
put ports are logically distributed across the communicating
nodes.

Virtual Machine for Task Monitoring.A task, to comply to
the LET, is dispatched and monitored by a virtual machine,
the E-machine [12]. The E-machine supervises the timing
behavior of a set of tasks and ensures their timing con-
sistency and their communication requirements. In a dis-
tributed environment, the communication requirements and
the local design of timing definitions of the tasks may raise
global design restrictions (scheduling restrictions) that need
to be resolved and synchronized with the global communi-
cation schedule of all nodes.

The E-machine executes platform-independent E-code
and calls platform-dependent application code. The appli-
cation code is responsible for logical correctness and the
E-code ensures timing consistency. The E-code consists of
a small set of instructions for basic control flow and pro-
cessing, that allows for synchronous calls of input and out-
put port drivers, task and actuator scheduling and initializ-
ing the execution of a set of E-code instructions at some
point in time in the future. A task, violating its timing prop-
erties, causes a run-time exception that is handled by an ex-
ception handler.

Autonomous Communication System for Value Transmis-
sion. The communication system of TDL supplies a data
communication system that allows for transmitting values
from task output ports of a TDL program to input ports of
a task running on a different computational node. It uses a
time-triggered communication subsystem to transmit data.
It works autonomously: sending and receiving of messages
happens without any interaction from the application pro-
gram [18].

Synchronization.Time-triggered computation and commu-
nication, when distributed on several computational nodes,
requires a synchronized time base among the participating
nodes. The common time base is a precondition for syn-
chronization of data-dependent tasks and for using a time-
division multiple access (TDMA) bus arbitration scheme.
In TDMA, a node accesses a single transmission channel
without interference from other nodes. Usually, it is imple-
mented by communicating nodes allocating predetermined
time slots on the channel.

Determinism for Value and Time Predictability.The intro-
duction of the E-machine ensures compliance to the LET,
which allows precise synchronization of tasks for local and
distributed applications. Assuming clock synchronization
of the participating computational nodes, this leads to value
and time deterministic distributed systems. Determinism is

a desirable property for software systems that control physi-
cal systems that are ruled by deterministic physical laws [9].
In a deterministic system, an external observer can consis-
tently predict the future behavior of the system. A systems
is said to be value deterministic, if the same sequence of
inputs produces the same sequence of outputs. If the sys-
tem produces for the same sequence of inputs the same se-
quence of outputs at always the same time, then it will be
value and time deterministic.

Timed Model for Determinism.In distributed applications,
in which values from task output ports are transmitted over
the communication medium to input ports of tasks on differ-
ent computational nodes, the LET is composed of the logi-
cal computation time (LCT) of a task and the logical trans-
mission time (LTT) of the task’s output values (see Fig-
ure 1). The LCT specifies a fixed time interval in which the

Logical execution time (LET)

Relative Deadline

Transmission
Slot

Transmission
Slot

Results available
to local and non−local
output ports

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

�
�
�

�
�
�

� � � �
� � � �
� � � �

	 	 	 	
	 	 	 	
	 	 	 	

�
�
�

Logical transmission time (LTT)

Completion

Resume Complete

Time

Release

Logical computation time (LCT)

Start

Reading input ports

Suspend

Logical completion

Figure 1. Implementation of computation and
communication of a task in LET.

task is active. The task starts after it has been released, may
be preempted, but resumes and always completes its exe-
cution before the LCT has elapsed. This LCT remains the
same for e.g. different platforms or for different task im-
plementations. Then, the LCT ensures that a set of tasks ex-
hibits invariant timing behavior. The underlying assumption
is that the set of tasks is schedulable, this means that there
is enough time available within the interval to execute each
task of the set.

The length of the LET determines the length of the LTT.
The real-time system designer specifies the LET and might
need to reconcile it with the (1) LTT specifications of all
tasks in the system and (2) the worst case communication
time of the communication medium.

3. Related Work

Approaches to computation and communication in dis-
tributed real-time systems can broadly be divided into two
categories. Time-triggered systems use a global time base
for controlling the release time and the deadlines of tasks
and the sending and receiving of messages. Event-triggered

systems release a task after the registration of an event that
activates the task. A message will be sent immediately if the
communication media is free. If the media is occupied, the
transmission will be delayed until the media is free.

The time-triggered protocol (TTP) is a communication
protocol for fault-tolerant distributed hard real-time sys-
tems [16]. It provides time-triggered transmission of mes-
sages, distributed clock-synchronization, and a membership
service. The communication on the bus is done with static
and periodic TDMA rounds. Every message that is sent
from any node has to be specified and an automatic sched-
uler generates a bus schedule matching the specifications.
Implemented as message descriptor list, the schedule spec-
ifies exactly when a node has to send a certain message and
when messages from the other nodes have to be received.
The task descriptor list describes the cyclic scheduling of
application tasks. This list specifies the instances of time of
starting and stopping tasks. This system guarantees value
and time determinism on a global level, however on a sin-
gle computational node, time determinism and value deter-
minism cannot be guaranteed, since tasks are not executed
according to the timed model and values are not communi-
cated at predefined instances of time between locally exe-
cuted tasks.

Event-triggered communication must provide collision
detection and resolution or avoidance techniques. CAN uses
a bit arbitration for collision avoidance [5]. Bitwise arbi-
tration allows for determining the priority of each message
sent. Messages with a higher priority continue to send while
nodes with low priority messages delay their transmission.
Bitwise arbitration causes non-deterministic transmission
delays.

DaVinci supports the control engineer to develop ap-
plications for distributed platforms [24]. It provides two
tools which separate the design of functional components
from the integration of those components to a specific,
possibly distributed platform. The runtime behavior of a
DaVinci application depends on the prioritization of tasks
and bus messages. The unrestricted way of using, for ex-
ample, semaphores or other resources may lead to phenom-
ena such as priority inversion, where determinism cannot be
guaranteed.

In this article, we present the TDL system for time-
triggered computation and efficient communication that
aims at value and time determinism of a hard real-time ap-
plication on each computational node and among all dis-
tributed nodes.

4. Intertwined Communication and Compu-
tation with Micro-tasks

In [18], the authors suggest to split the LET into an LCT
and an LTT. In this model, the results of the task are passed
to the communication subsystem for transmission on the
shared communication medium at the end of the LCT. Thus,
communication tends to accumulate at the end of harmonic

task periods and the hyperperiod of each modules. If sev-
eral modules have the same mode period, then the shared
communication medium will be congested at certain times.

Figure 2 shows an example of a situation in which com-
munication piles up. TaskT1 and T2 share the same fre-
quency and the same mode period. TaskT1 communicates
two messages and TaskT2 communicates one message.
Both tasks send the their messages after the LCT and be-
fore the LET expires. However, since the communication
medium is shared, the remaining time of the LET is insuf-
ficient to transmit all messages and the bus scheduler might
try to resolve this conflict by reducing the LCT of one of the
tasks. This however, might entail other conflicts or contra-
dict with system requirements.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

T1

Bus

T2

Time
Comm. cycle =LETT1 = LETT2

LCTT1

LCTT2

Figure 2. Communication cumulates at the
end of the period and decreases the available
LCT of Task T1 and Task T2.

To provide more flexibility for the bus scheduler, we
split taskT1 into a sequence of Micro-tasks. Each Micro-
task computes results and if no succeeding Micro-task up-
dates this results subsequently in the same period, the value
will be passed to the communication system and thus the
bus scheduler will be enabled to schedule the transmission
of this value even before the LCT of the parent task has
elapsed.

Figure 3 shows an example of intertwined computation
of Micro-tasks and communication of their results. In con-
trast to the previous example, TaskT1 is now split into three
Micro-tasks:mt1, mt2, mt3. Each Micro-task computes re-
sults, but only the results of Micro-taskmt1 andmt2 must
be transmitted over the bus. The bus scheduler is able to
schedule the transmission of the results of Micro-taskmt1
andmt2 immediately after their completion. As Figure 3
shows, in total TaskT1 has a larger LCT than in Figure 2
(LCTT1 =

∑
i LETmti), since communication is inter-

twined with computation.

4.1. Micro-tasks in TDL

Listing 1 implements the TDL program for the exam-
ple of Figure 3 (T2 omitted). The syntax and semantics
of Micro-tasks are similar to the declaration of tasks (for

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

T1

Bus

T2

Time
Comm. cycle =LETT1 = LETT2

mt1 mt2 mt3

LCTT2

LCTmt3LCTmt2LCTmt1

Figure 3. Single values are computed using
Micro-tasks and are sent prior to the end of
the LCT of Task T1.

full description of the syntax and semantic of Micro-tasks,
see [8]).

task mt1 [WCET= 100 ms] {
i npu t int i ;
output int o ;
uses f1 (i , o) ;

}
task mt2 [WCET= 200 ms] {

i npu t int i ;
output int o ;
uses f2 (i , o) ;

}
task mt3 [WCET= 50 ms] {

i npu t int i , s ;
output int o ;
uses f3 (i , s , o) ;

}
task T1 {

i npu t int i ;
output int o1 , o2 ;
s t a t e int s ;

[LET = 200 ms] mt1 {i := this . i } ;
this . o1 = mt1 . o ;
[LET = 300 ms] i f g2 () then mt2 {i := mt1 . o } ;
this . o2 = mt2 . o ;
[LET = 100 ms] mt3 {i := this . i , s := this . s } ;
this . s = mt3 . o ;

}
s t a r t mode main [1000 ms] {

task
[1] T1 {i := s1 } ;
. . . .

}

Listing 1: Example TDL snipplet for Figure 3.

Task T1 comprises three Micro-tasks. First, it releases
mt1 that has to finish its execution within the next 200 mil-
liseconds (LET = 200 ms and WCET = 100ms). Micro-task
mt1 computes the outputo1 of TaskT1 as the assignment
shows in the declaration of taskT1. Micro-taskmt2 exe-
cutes, if the guardg2 evaluates to true. If it executes, it will
finish within the next 300 milliseconds as specified in its
LET. Micro-taskmt2 computes the output valueo2 of task
T1. Finally taskT3 computes the new value for the state
variables.

4.2. E-code Generation

The TDL compiler compiles the TDL program into E-
code. To provide more flexibility for the bus scheduling,
the output values are transmitted to the communication sub-
system as they are no longer modified for the remaining of
the LET of the parent task. This increases the time interval
(LTT) in which the values may be transmitted by the com-
munication system and thus increases the number of possi-
bilities for the bus scheduler to find a schedulable solution.

Listing 2 shows the resulting E-code for Listing 1. The
most important E-code instruction are thecall, schedule,
future, andreturn instruction: Thecall instruction syn-
chronously executes drivers of a task. Theschedule instruc-
tion releases a task to be activated by the dispatcher of the
operating system. Thefuture instruction initiates the exe-
cution of a block E-code instructions at some time in the fu-
ture and thereturn instruction finishes the execution of the
block of E-code of the current label. The E-code starts with
the instruction at labelL0. In the first two instructions, the
E-machine calls the drivers for reading input values into the
input ports of taskT1 and Micro-taskmt1. Then, taskmt1
andT1 are scheduled. Execution of the E-code is then con-
tinued at Label L1 after 200 ms, indicated by the future in-
struction. As the output valueo1 of TaskT1 does not change
after the output value of Micro-taskmt1 has been assigned,
the value is passed to the communication system after 200
milliseconds calling drivernw1. The same is done for the
output valueo2 of TaskT1, analogous to the E-code instruc-
tion at Label L0.

L0 : c a l l d [T1]
c a l l d [mt1]
schedu le mt1
schedu le T1
f u tu re 200000 , L1
re turn

L1 : c a l l d [nw1]
c a l l d [mt2]
schedu le mt2
f u tu re 300000 , L2
re turn

L2 : c a l l d [nw2]
c a l l d [mt3]
schedu le mt3
f u tu re 100000 , L0
re turn

Listing 2: The E-code for the TDL program in Listing 1.

5. Overview of TDL for OSEK and TTCAN

In the following, we present a prototype implementation
of the TDL infrastructure for distributed hard real-time ap-
plications. Figure 4 provides an overview. The TDL runtime
part of the infrastructure consists of TDL-Exec and TDL-
Comm: TDL-Exec implements the E-machine and TDL-
Comm is a communication system that allows for transmit-
ting values from task output ports of a TDL program to in-
put ports of a task running on a different node. TDL-Exec

and TDL-Comm are implemented on OSEK with sTTCAN
as communication system.

E−codeOIL

TDL program

Platform (OSEK/VDX)

Sensor Environment Actuator

source code
Application

Application
object code

TDL−Comm
read

callsexecutes

Online

Offline

callscalls

runs on

Actuator

callscalls

provides provides

acts on

calls calls

collects

data

compiles into

calls

compiles into

Application
wrapper
object code

Driver code Driver code

TDL−Comm
writeTDL−Comm (sTTCAN)

TDL−Exec (E−Machine)

Environment

Figure 4. TDL infrastructure for distributed
real-time applications.

OSEK/VDX started as a joint project of the automotive
industry becoming an open standard for real-time software
control systems. Current specifications are limited to single
processor systems, with support for distribution via specific
communication interfaces such as CAN. The operating sys-
tem is designed to be modular and configurable to support a
wide range of embedded platforms with small memory foot-
prints targeting low-end microprocessors/micro-controllers.
The operating system does not support dynamic generation
of system objects, such as tasks, services, or resources.

The configuration of tasks and their properties, such as
priority, stack space, preemption flag, and alarms and re-
sources are statically defined at compile time in a specific
configuration file using the OSEK Implementation Lan-
guage (OIL). During runtime, the number of tasks and their
properties described in the OIL file cannot change. Each
OSEK task has a statically defined priority that is used by
the OS dispatcher to decide which task to run. OSEK tasks
can have one of two types: basic and extended. The main
difference between them is resource access. Any basic task
can either be in the ready, running, or suspended state. Ex-
tended tasks may have the additional state of waiting for a
resource. In addition to task priorities, the timing aspects
of tasks can be controlled with alarms based on user de-
fined counters. The counters are all derived from the sys-
tem counter or some external timer interrupt. The alarms
can be setup to activate new instances of tasks just once or
in a cyclical fashion.

6. TDL-Exec for OSEK

The TDL execution environment (TDL-Exec) consists of
the E-machine. It must exhibit the same properties in all im-
plementations no matter the underlying real-time operating
system. The current implementation is based on standard

Cycle period

Task 2 period

Task 2

Task 3

ActivateTask

Release T1, T2, T3

Task 1

IDLE Task

High

Prio

Low

Prio

ActivateTask

Release T3

ActivateTask

Release T2

ActivateTask

Release T3

E-Machine

Highest

Prio

Task 3 period

Task 1 period

Legend

Loopback

Zero Logical Time

Suspended Task

Ready Task

Running Task

Task Termination

OSEK Alarm

Task Deadline

Release task

Timed preemption

Figure 5. Rate Monotonic scheduling with OSEK

ANSI C-code, making it highly portable to most embed-
ded platforms. Since each operating system has different
ways to implement basic concepts such as threads, tasks,
delays or alarms, all of these OS dependent aspects are sep-
arated from the application code and the implementation of
the E-machine for easier maintenance and portability.

The TDL toolchain may use model-based development
tools such as Simulink [17] to produce application source
code and the corresponding TDL program [21]. The TDL
compiler compiles the TDL program into E-code and appli-
cation wrapper code that is used to build the final real-time
application conforming with the timed model. In the case of
the OSEK platform, an additional OIL configuration file is
generated and linked with the E-code, the wrappers, the ap-
plication code, the E-machine and OSEK libraries produc-
ing the final executable that is executed on the target plat-
form. As the OSEK OS does not provide any facilities for
supporting a filesystem or dynamic loading of user code,
the E-code is expressed as a static C data structure that is
linked with the functional code and compiled in in the fi-
nal application. The task wrappers represent OSEK tasks.
The OSEK tasks that encapsulate the application code are
released by the E-machine according to the corresponding
E-code instructions, this means in a time-triggered way. The
E-code sequence of instructions actually encodes the ap-
plication’s reactive behavior and performs the lock-free re-
source sharing (such as sensors or actuators) among differ-
ent logically concurrent tasks.

6.1. Task scheduling with the OSEK E-machine

The E-machine mediates between soft (logical) time and
real (physical) time and releases the tasks of the application.
It monitors the released tasks, their deadlines and their com-
munication requirements and constraints imposed by TDL-
Comm.

The OSEK internal scheduler supports plain static prior-
ity based scheduling. To implement a different scheduling

policy such as EDF or RM [6], OSEK provides the chain-
ing tasks feature. Chaining tasks are used in the OSEK E-
machine to complement the scheduling scheme of OSEK.
The E-machine selects the next active task according to the
current scheduling policy, such as EDF. However, depend-
ing on the implementation of the OSEK chaining tasks fea-
ture and the underlying OSEK task scheduler/dispatcher the
functionality may not be available under all OSEK OS vari-
ants.

6.2. E-machine Implementation under OSEK

The E-codeschedule instruction releases a task by tog-
gling its release flag and turning it into the ready state. Af-
ter a sequence ofschedule instructions follows the E-code
future instruction that initiates the execution of a sequence
of E-code after a specific amount of time has elapsed. De-
pending on the CPU speed of the target platform and the
OSEK OS variant the clock resolution may not be up to mi-
croseconds, but instead to hundreds of microseconds or a
couple of milliseconds. On the sample platform (KANIS
board with MPC555 CPU), the clock accuracy was deter-
mined to be around500µs. For lower time intervals the
clock drifting effect corrupts the overall behavior of the ap-
plication. Thereturn instruction ends the interpretation of
the current E-code block. The E-machine keeps track of all
future instructions parameters: future time and future E-
code instruction pointer, planning the activity for the next
cycles.

During the future time interval the released tasks are run
by the E-machine scheduler according to its scheduling pol-
icy. Since the E-machine is a task itself, the E-machine is
triggered (1) by an OSEK alarm in a cyclic fashion with
time intervals equal to the last future time (from the last
E-codefuture instruction after a sequence ofschedule in-
structions) and (2) by application tasks after finishing their
computation. This loop-back mechanism (the E-machine is
triggered by application tasks, that it itself releases) that re-

turns control from the application tasks to the E-machine
before the future time has elapsed, allows running one task
at a time. Preempting a task is only necessary for schedul-
ing a new task, instead of periodically preempting tasks with
a certain frequency as many RTOS do [10]. The loop-back
mechanism improves the compactness of CPU time alloca-
tion for application tasks and generally provides less CPU
load and allows for better utilization of the remaining CPU
time for non real-time tasks, such as diagnostic activities.

Approaches using static non-preemptive scheduling with
no context switches (except for interrupt handling and other
OS critical activities) can schedule only specific sets of
tasks [6]. Our approach is more flexible with respect to the
set of tasks since the mechanism of our scheduling greatly
reduces the number of context switches required. Imple-
menting an optimal scheduler such as EDF or RM, the CPU
utilization level can be computed in advance for any given
set of tasks and in dynamic systems this may be a decisive
aspect for dynamically loading additional functionality on
the system. In our approach the benefit comes from the re-
duced number of context switches (that is not negligible on
low-end micro-controllers running high frequency tasks).

Figure 5 describes the Rate Monotonic scheduling policy
implemented with OSEK. Each task has a priority propor-
tional to its frequency: a higher frequency task has a higher
priority and a task with low frequency has a lower priority.
A task is released by the E-machine via ActiveTask func-
tion and the OSEK scheduler selects the active task with
the highest priority to run. A higher priority task preempts
a lower priority task until it finishes its computation. If a
tasks communicates with another task on a different com-
putational node, the task completes its execution by loop-
ing back to the E-machine to perform communication re-
lated functions.

6.3. Scheduling Micro-Tasks

From the E-machine point of view the Micro-tasks are
regarded as regular tasks. The E-code contains the actual
instructions to release the Micro-tasks at the right moments
and to run the drivers when needed. The main difference is
that the E-machine will be triggered more often than in the
case of regular tasks (equal to the number of Micro-tasks
a regular task is composed of). The performance impact of
this side-effect is acceptable and is backed up by the ad-
ditional flexibility in implementing arbitrary computation /
communication workloads.

7. TDL-Comm on top of sTTCAN for OSEK

The TDL infrastructure accommodates the TDL Com-
munication Subsystem (TDL-Comm) for distributed appli-
cations. TDL-Comm implements a distributed shared vari-
able space in which TDL ports are shared among several
computational nodes. TDL-Exec accesses shared TDL pub-
lic ports via the TDL-Comm interface.

TDL-Comm builds on a time-triggered communication
subsystem. The time-triggered communication subsystem
of each network node processes all communication activ-
ities. TDL-Comm accesses the communication network in-
terface of the node’s local network controller which con-
tains all messages received or sent by the network con-
troller. It copies data between this communication network
interface and the TDL-Comm interface in order to make
them accessible to TDL-Exec.

7.1. TDL-Comm Interfaces

TDL-Comm exposes three interfaces to the TDL-Exec
of a computational node:

• Comm Interface.The Comm Interface contains the
data shared among the nodes. The data is represented
by means of TDL ports. TDL tasks of TDL-Exec ac-
cess the shared ports within the Comm Interface using
port specific drivers. The drivers copy values of output
ports of a task to the input ports of the Comm inter-
face, which forwards them to the communication net-
work interface. The Comm Interface has a set of out-
put ports, whose values are destined for input ports of
tasks, which are then retrieved via tasks drivers.

• FT InterfaceThe FT interface contains information re-
garding the status of replication and fault tolerant com-
munication.

• Native Interface.The native interface contains sup-
ports, for example, access to platform specific services,
such as the error counters of a CAN controller, etc.

7.2. TDL-Comm toolchain.

TDL-Comm consists of an offline and an online part. The
runtime behavior of the TDL-Comm online part is defined
a priori (before runtime) by the offline part (TDL-Comm
scheduler).

Offline. The offline part analyzes the distributed applica-
tion and generates the communication schedule. The TDL-
Comm compiler scans all TDL modules and a module using
resources (sensors, actuators, or ports) of a different mod-
ule located on a remote node indicates that communication
is required. The use of resources of a different module is in-
dicated by the import relation between TDL modules. The
mapping of TDL modules (parts of functionality) to com-
putational nodes is defined in a dedicated configuration file
which is read by the TDL-Comm compiler.

The communication requirements are the basis for cre-
ating a global bus schedule. After generation of the global
bus schedule, the TDL-Comm compiler generates a static
communication schedule list for each computational node,
which defines the behavior of the TDL-Comm online part
during runtime.

Online. The TDL-Comm online part processes the a pri-
ori defined static communication schedule list. The commu-
nication schedule list defines activities which are synchro-
nized with the timing of TDL-Exec and which are cycli-
cally repeated in synchronization with the TDL mode pe-
riod. The activities are sending and receiving of messages
or the preparation of messages for transmission depending
on the underlying communication subsystem. Other activi-
ties are copying data between the TDL Comm interface and
the communication subsystem, marshaling TDL ports into
data frames of the communication subsystem, voting fault
tolerant values and updating the status fields within the FT
interface.

7.3. Software TTCAN Implementation for OSEK

The TDL-Comm implementation uses a standard physi-
cal CAN link [5] and bases its concepts on TTCAN [11].
TTCAN extends the CAN protocol by providing time-
triggered communication via the standard physical CAN
link [5]. TDL-Comm is based on a proprietary implemen-
tation of TTCAN in software which we call sTTCAN. This
implementation was required because of the lack of avail-
ability of a production TTCAN controller chip and tool
chain support on the one hand and because of the greater
flexibility to adopt the protocol to TDL specific needs on
the other hand.

7.3.1. Clock SynchronizationTime-triggered communi-
cation requires a globally synchronized time base that needs
to be established among the participating nodes [15]. The
synchronized local clocks of the nodes enable the participat-
ing nodes to access the bus via TDMA arbitration scheme.
Each node has certain instances (time slots) assigned in
which it has exclusive access to the communication medium
thus avoiding collisions and allowing for predictable jitter-
free communication.

The synchronization of the local clocks of the nodes
is accomplished using a master-slave clock synchroniza-
tion scheme based on the TTP/A fireworks protocol [14].
One of the nodes act as clock synchronization master cycli-
cally broadcasting a synchronization message (sync frame)
which is used by the other nodes (slaves) to synchronize
their clocks to the clock of the master. On reception of the
sync frame of the master, the slaves generate a time stamp
with their local clock. Each sync frame contains a time
stamp of the masters clock at the time of sending the sync
frame. The slaves calculate the current deviation of their
clocks from the master clock subtracting the time stamp re-
ceived within the sync frame from the time stamp gener-
ated with their own clock. This deviation is compensated
within the current synchronization period (until the next
sync frame is received) by adjusting the speed of the lo-
cal clock.

Time stamping is done using the time stamping feature
of the MPC555 CAN controller. It automatically generates

a time stamp on reception of a message, i.e., at the instant
of detection of the start of frame symbol on the bus. Thus
it is possible to do time stamping at the slave nodes without
the use of interrupts. Using interrupts would cause indeter-
minism, because of possible preemption of the TDL-Exec,
and furthermore executing interrupt service routines to gen-
erate time stamps is not accurate because of jitter.

7.3.2. Software TTCAN Synchronizing the OSEK sys-
tem timers of the computational nodes enables a software
implementation of a time-triggered communication proto-
col via the standard CAN bus entirely under OSEK. The
communication schedule list is locally stored at each node.
For each slot there is an entry in the communication sched-
ule list denoting the point in time a slot starts, the activity
(send or receive), the length of the slot, and the number of
the message it has to send or to receive within this slot.

The communication pattern is recurring cyclically, the
length of the cycle is synchronized to the TDL mode pe-
riod. The sync frame sent by the clock master denotes the
start of a new communication round. On its reception all
nodes start processing their static communication schedule
list from the beginning. Transmitting messages usually does
not require CPU interaction if a time-triggered communica-
tion subsystem is used, because it usually has its own au-
tonomous controller. However, the sTTCAN implementa-
tion needs CPU interaction to trigger the sending of mes-
sages.

Sending of messages is done setting-up OSEK alarms
successively for each send entry in the communication
schedule list. If the alarm fires, the alarm callback routine
triggers the CAN controller to send the appropriate message
denoted in the actual entry of the communication schedule
list. Then, the next alarm is set-up according to the instance
denoted in the next entry of the communication schedule
list. This is repeated until the end of the list is reached. With
the beginning of the next communication round processing
starts anew from the beginning of the list.

Receiving of messages does not need CPU interaction.
If a message is received which is intended for the node it
is automatically stored in one of the 16 buffers of the CAN
controller.

7.3.3. TDL-Comm with Micro-task Support In the case
of the prototype implementation on top of sTTCAN the
TDL-Comm Interface is represented by the 16 message
buffers of the CAN controller. Each of the 16 message
buffers can hold one message. The prototype implementa-
tion of TDL-Comm consists of a set of specific TDL drivers
which directly access the data within the CAN buffers and
copy them to a group of dedicated TDL ports representing
the TDL-Comm interface. The communication schedule list
determines the number of the buffer entry (message buffer)
an activity has to be carried out on at a specific point in time
(see Table 1). The beginning of an activity, i.e., the start of
a time slot is denoted inms (Start Time) relative to the start
of the round, the number of the buffer entry is denoted as the

(a) The setup. (b) Congestion at the end of the period. (c) Balanced load (Micro-tasks).

Figure 6. TDL infrastructure setup using Micro-tasks to balance network load in the timed model.

number of the corresponding message buffer and the length
of the time slot is denoted as length of the message to be
transmitted within. The timing denoted within the list, i.e.,
the start time of a slot is converted into OSEK system timer
ticks (MT) in order to set up the corresponding alarms (re-
fer to section 7.3.2).

Pos. Start Time #Buffer Length
1 2 1 4
2 15 2 2

Table 1. Communication schedule.

The scheduling list presented in the table 1 defines the
communication schedule for one node that executes two ac-
tivities within each communication round. The first entry of
the list indicates that during the time slot beginning atms2
relative from the start of the round it has to send a four byte
message which is stored in buffer number one. The second
entry indicates the transmission of a two byte message dur-
ing the time slot beginning atms15 stored in buffer num-
ber two. The timing of the communication subsystem and
the E-machine rely both on the local OSEK system timer
and on the fact that the OSEK system timers of all involved
nodes are synchronized.

Regarding Micro-tasks, access to the TDL-Comm is
completely transparent to the TDL-Exec. Both, ordinary
TDL tasks as well as Micro-tasks access public ports within
the TDL-Comm interface via dedicated drivers. To commu-
nicate a value to a remote node, TDL-Exec executes a spe-
cific driver which is declared in the E-code resulting from a
TDL program running on the local node. The driver copies
the output value from the output port of a task or a Micro-
task to the TDL-Comm Interface. At the receiving node, a
dedicated driver, declared in the E-code of the TDL program
running at this node, fetches the received value from the
buffer of the CAN controller it was received in and copies
it to the input port of the receiving task or Micro-task.

From the point of view of TDL-Comm the treatment of

the TDL-Comm interface ports accessed by ordinary TDL
tasks and the treatment of the ports accessed by Micro-tasks
is different regarding timing aspects. In the case of the for-
mer the instances at which the ports within the interface are
updated are determined by the LCT restrictions imposed on
the timing of communicating tasks by the schedule of the
bus. In the case of the latter they are determined by the in-
stances defined in the Micro-task code at which the drivers
accessing the TDL-Comm interface are invoked.

Because of the explicit definition of the timing of ac-
tivities within the LET, the Micro-task approach allows for
communication of values at the beginning of the LET and
thus for utmost flexibility regarding the bus scheduling.

8. Results

Our target platform is the Motorola MPC555, a micro
controller commonly used for automotive applications [19].
The target board is the KANIS OAK EMUF [4], which
features integrated physical layer drivers for CAN and en-
hances the I/O palette offered by the controller with an addi-
tional Ethernet link. Each computational node of the exam-
ple distributed TDL application is a KANIS OAK EMUF
board. The nodes in this example are interconnected via a
CAN bus link (see Figure 6(a)).

We present the results of the examples introduced in
section 4: Task execution with communication at the end
of their period and Micro-task implementation with inter-
twined communication during the LET of the parent task.
Figure 6(b) and 6(c) present images of an oscilloscope
showing the task dispatching, the E-machine activities, and
the network frames. Each image of the oscilloscope shows
four different signals: The analog line A1 (uppermost sig-
nal) is connected to the CAN bus signal and displays net-
work frames (e.g., sync frame and data frame). Each round
starts with the sync frame on the CAN bus. The cycle length
of the application is 20ms and is delimited in the oscillo-
scope images by the two vertical dashed lines (cursors). The
digital input signals 8, 9, and 10 (three lowermost signals)
are connected to digital outputs of the board and display the
states of tasks and the E-machine task. A high signal means

that a task is running and a low signal denotes a task that is
stopped or suspended.

Figure 6(b) shows the behavior of the implementation
without Micro-tasks. After start of the period by the sync
frame (right next to the cursor line), the E-machine task be-
comes active (peak on oscilloscope at input line 10) releas-
ing tasksT1 andT2. T1 is scheduled immediately (oscillo-
scope at input line 8 changes to high) after the E-machine
task has terminated. After taskT1 has completed its com-
putation, the E-machine task is resumed by the chain-task
loopback (peak at input line 10). It invokes the communica-
tion driver for taskT1 and schedules taskT2 (input line 9)
for execution. WhileT2 executes, the CAN controller com-
municates the results ofT1 in two slots. After taskT2 has
finished its computation (input line 9 changes back to low)
its result is communicated via the CAN bus in the last slot
before the next round starts.

Figure 6(c) presents the behavior of the implementation
using Micro-tasks. At the start of the period, the E-machine
task (peak at input line 10) releases tasksT1 andT2. Task
T1 consists of three Micro-tasksmt1, mt2, andmt3. Micro-
taskmt1 starts (input line 8 changes to high) immediately
after the E-machine task has finished. Micro-taskmt1 fin-
ishes its computation (input line 8 changes to low) and
triggers the E-machine task, which invokes the drivers that
copy the result ofmt1 to the communication system. Then
it schedules Micro-taskmt2 (input line 8 changes to high
again). Concurrently with the execution ofmt2, the result of
mt1 is transmitted via the CAN bus (network frame on in-
put line A1). Analogous the result ofmt2 is communicated
while mt3 executes. After its completion the E-machine
schedules taskT2 (input line 9 changes to high). The re-
sult of T2 are communicated over the bus after completion
of its computation (input line 9 changes to low).

9. Conclusion

In distributed hard real-time systems, deterministic and
efficient usage of shared communication media is of great
importance. The timed computation model for real-time
systems implements value and time determinism. However,
it favors value and time determinism over time efficiency. In
this paper, we presented Micro-tasks for intertwined com-
putation and communication. Micro-tasks allow for effi-
cient and balanced load on the communication medium,
providing the bus scheduler with more flexibility with re-
spect to the time interval in which data can be transmitted.

We described the TDL infrastructure for distributed
real-time applications presenting TDL-Exec and TDL-
Comm. TDL-Exec provides the E-machine that dis-
patches and monitors the execution of tasks in real-time.
TDL-Comm accommodates a communication system
for real-time data transmission. We discussed the execu-
tion of Micro-tasks in the TDL infrastructure and presented
an implementation for OSEK/Works and sTTCAN.

As future work, we will explore how to use Micro-tasks
to impose certain communication patterns on the bus such
as predefined communication gaps.

References

[1] The new IEEE standard dictionary of electrical and electron-
ics terms, IEEE standard, 1992.

[2] R. Alur and D.L.Dill. A Theory of Timed Automata.Theo-
retical Computer Science, 126:183 – 235, 1994.

[3] R. Alur, L. Fix, and T. Henzinger. Event-clock automata: a
determinizable class of timed automata.Theor. Comput. Sci.,
211(1-2):253–273, 1999.

[4] W. Bals. Hardware Manual OAKEMUF. Ing. Büro W. Ka-
nis GmbH, Br̈uckenweg 2, D-82327 Tutzing, 2002.

[5] Bosch.CAN Specification, Version 2. Robert Bosch GmbH,
1991.

[6] G. Buttazzo.Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 2000.

[7] D.-J. Chen and M. Sanfridson. Introduction to Distributed
Systems for Real-Time Control. Technical Report TRITA
MMK 1998:22, Department of MD, KTH, Sweden, 2000.

[8] S. Fischmeister and G. Menkhaus. Task Sequencing for Op-
timizing the Computation Cycle in a Timed Computation
Model. In23rd DASC’04. IEEE Press, 2004.

[9] G. Franklin, D. Powell, and M. Workman.Digital Control of
Dynamic Systems. Prentice Hall, 1997.

[10] FSMLab.Real-Time Linux, 2004.
[11] T. Führer, B. M̈uller, W. Dieterle, F. Hartwich, R. Hugel, and

M. Walther. Time Triggered Communications on CAN. In
Proceedings 7th International CAN Conference, 2000.

[12] T. A. Henzinger and C. Kirsch. The embedded machine: Pre-
dictable, portable real-time code. InPLDI, 2002.

[13] C. Kirsch. Principles of Real-Time Programming.Springer
LNCS, 2491, 2002.

[14] H. Kopetz. TTP/A The fireworks protocol. InSAE Interna-
tional Congress and Exposition, 1995.

[15] H. Kopetz. Real-time Systems: Design Principles for Dis-
tributed Embedded Applications. Kluwer, 1997.

[16] H. Kopetz. The time-triggered model of computation.
RTSS98, 1998.

[17] MathWorks, www.mathworks.com.Simulink.
[18] G. Menkhaus, M. Holzmann, and S. Fischmeister. Time-

triggered Communication for Distributed Control Applica-
tions in a Timed Computation Model. In23rd DASC’04.
IEEE Press, 2004.

[19] Motorola. MPC555/556 User’s Manual, 2000.
[20] J. Sifakis. Modeling Real-Time Systems-Challenges and

Work Directions. InEMSOFT, pages 373–389. Springer-
Verlag, 2001.

[21] G. Stieglbauer and W. Pree. Visual and Interactive Develop-
ment of Hard Real Time Code. InASWSD’04, 2004.

[22] J. Templ. TDL Specification and Report. Technical report,
Computer Science, University of Salzburg, 2004.

[23] M. Törngren. Fundamentals of Implementing Real-Time
Control Applications in Distributed Computer Systems.
Real-Time Systems, 14(3):219 – 250, 1998.

[24] M. Wernicke. New Design Methodology from Vector sim-
plifies the Development of Distributed Systems.Vector In-
formatik Press Release, 2003.

