Object-Oriented Design Patterns and Hot Spot
Cards

Wolfgang Pree

Applied Computer Science
University of Constance, D-78457 Constance, Germany
Voice: +49-7531-88-44-33; Fax: +49-7531-88-35-77
E-mail: pree@acm.org

Abstract. There is anundeniabledemand tocapture alreadyroven and
maturedobject-oriented design so that building reusablgect-oriented
software does not always have to start from scraftteterm design pattern
emerged as buzzwottiat is associated as a means to meet gloal. This
paper starts with an overview of relevant design pattern approachgsedt
on to discuss théew essential design patterns of flexibtebject-oriented
architectures, so-called frameworkBhe paper sketches theelationship
between thesessential design patterrsd the design pattern catalog by
Erich Gamma et al. [8]. The implications for findimpmain-specificdesign
patterns are outlined.

Keywords. Design patterns, object-oriented design, object-oriersteft-
ware development, frameworks, reusability

1 Introduction

Over the past couple of years (design) patterns have become a hot topic in the software
engineering community. In general, patterns helpettucdecomplexity in many real-

life situations. For example, in many situations skequence of actions is crucial in
order to accomplish a certain task. Instead of having to choose from an almost infinite
number of possible combinations of actions, patterns allow the solution of problems
in a certain context by providing time-tested combinations that work. Adest this

mean in the realm of software construction?

Programmersend to create parts of a program by imitatingpugh not directly
copying, parts of programs written by other, madvanced progmmers. This
imitation involves noticing the pattern of some otleede andadapting it to the
program at hand. Such imitation is as old as programming.

The design pattern concept can bewad as ambstraction of this imitation activity.

In other words, design patterns constitute a set of rukagidimghow to accomplish
certain tasks in the realm of software development. Asorssequencebooks on
algorithms also fall into the category of general design patterns. For example, sorting
algorithms describe how to sort elements in #itient way depending on various
contexts. If the idea sketched above is applied to object-oriented softysieens, we
speak of design patterns for object-oriented software development.

Currently, patterns comprise a wide variety of activities in the softderelopment
process, ranging from high-level organizational issues such as pnog@etgement
and tam organization to low-level implementation issues such asatigsricks
regarding the use of a mgpiaular programming language. The pattetanference
proceedings reflect this widgpactrum, for example, [6]. Due to the origin of the
pattern movement in theafmeworkcommunity, numerous patterns stilbctis on
how to construct frameworks. Section 3 discusses these approaches in detail.

2 History and Overview of Pattern Approaches

The roots of object-oriented design patterns go back to the late 49d @=arly1980s.
The first available fimeworks sch as Smalltalk’'sModel-View-Controller (MVC)
framework [13]and MacApp [18, 21] evealed that a dmework'scomplexity is a
burden for its (re)user. Admework user must become fitiar with its design, that
is, the design of the inddual classesnd the interaction b&ten these classes, and
maybe with basic object-oriented programming concaptsa pecific programming
language as well. This is why (framework) cookbooks have come to light:

Framework Cookbooks. Cookbookscontain numerousecipes They describe in

an informal way how to use aafnework in order to solve specific prebis. The

term framework usage expresses that a programmer uses a framework as a basis for
application development. A particular frameworkadapted to pecific needs. Recipes
usually do not explain the internal desigmd impementation detls of a framework.
Cookbook recipes with their inherent refeces to other recipes lendemselves to
presentation as hypertext.

Cookbooks exist for variousadmeworks. For example, &nerand Pope present a
cookbook for using the MVC dmework [13].The MacApp cookbook [5] describes
how to adapt the GURpplication framework MacApp in order to builgbplications

for the Macintosh. Ralph Johnson wrote a cookbook [12] for the HotDeanefwork,

a system developed bgent Beck and WardCunningham for implementing various
kinds of graphic editors. ParcPlace-Digitalk Smalltalk provides an extensive cookbook
for adapting the corresponding framework library.

Coding Styles & ldioms. These patterns form a quitéferent pattern category.
C++ is a representativexample of an object-oriented programming languapese
complexity equires coding patterns tame its montrosity. The principal goals of
coding patterns are

» to demonstrate useful ways of combining basic language concepts
 to form the basis for standardizing source-code structure and names

» to avoid fitfalls and to weed out defiencies of object-oriented pr@mming languages,
which is especially relevant in the realm of C++.

Coplien’'s C++ Styles & Idioms [7] and Taligent’s guidelines for ustiwgt [19] fall
into this category.

Formal Contracts. In the early 1990s moradvanceddesign patterrapproaches
gainedmomentum that focus onaimework developmentvailable object-oriented
analysis and design methods appeared to bdfizient to construct reusable software
architectures. In order to better understand object-oriented architedieneshbuld be

described on aabstraction level that is higher than their implementatanguage.
For example, Rhard Helmet al. described interactions leten objects of ifferent
classes in a framework in a formal way [11].

Gamma’s Description of ET++. Pioneering work waaccomplished by Erich
Gamma in hisdoctoral theis [9] which presents patternscorporated in the GUI
application frameworkET++ [20, 1]. Gamma was inspired by Helm’'s formal
contracts. Instead of using a formal notationdeeribedET++ by means of informal

text combined with class and interaction diagrams. The design pattern catalog [8], also
known as Gang-of-Four (GoF) book, resulted from Gamma'’s PhD thesis.

Influence of Building Architecture. At the 1991 Object-Oriented
Programming Systems, Languages and Applications (OOPS&bAjerence—a major
forum for researchers and ptiioners in the field of object-oriented
technology—Bruce Andersorheaded the work®p “Towards an Architecture
Handbook”. Pdicipants wereencouraged to describe design patterns in a manner
similar to the descriptions of architecture patterns presented in Christogxandér's
booksA Pattern Languag§4] andThe Timeless Way of Buildifg8]. Thesebooks
show non-architects whatjood designs ohomesand communities look like. One
pattern, for example, recommends placing windows on two sides of a ro@adimst
having windows only on one side. Alexander’s patterns coifereht levels of detail,
from the arrangement of roadad various buildings to the did$aof how to design
rooms. In general, this architecture handbook waygs inspired the pattern
community, in particular the writing of the GoF book.

Workshops on object-oriented patterns wergaoized at sulesjuent OOPSLA
conferences. A separate conference on design pattetd®(PatternLanguages of
Program Design) started in the U.S. in August 1994, theean pendant, called
EuroPLoP, was first held in 1995.

3 Essential Framework Design Patterns

Frameworks are well suited for domains where numerous similar applications are built
from scratch agaiandagain. A famework defines aigh-level Anguagewith which
applications within a domain are createdotigh specialization (= adaptation).
Specialization takes place at points of predefined refinement that wetafots We
consider a framework to have the quality attribumédl designedf it provides adequate

hot spots for adaptations. For example, Lewis et al. present various high-quality
frameworks [14].

3.1 Flexibility Through Hooks

Methods in a class can be categorized iokcaked hookand emplate methods: Hook
methods can be viewed as place holders or flexible hot spots that are invoked by more
complex methods. These complex methodsuarelly temed emplate methods [8,

15]. Note that template methodsust not beconfused with theC++ template
construct, which has a completely different meaning. Template methods dediraetab
behavior or generic flow of control or the interactiorw®sn objets. The basic idea

of hook methods is thaiverridinghooks throughnheritance allows changes of an
object’s behavior without having to touch teeurcecode of the corrg®nding class.
Figure 1 exemplifies this concept which is tightigupled toconstructs in common

object-oriented languages. Methgdof classA is the template method which invokes
a hook methodh(), as shown in Figure 1(a). The hook huwat is an abstract one and
provides an empty default implementation. In Figure 1(b) the hookoaiets
overridden in a subclagg.

A Al

>

o= | ()

i
Il

h(o

(@) (b)
Fig. 1. (a) Template and hook methods and (b) hook overriding.

Let us define the class that contains the hookhatktinder consideration a$iook

classH and the class thaiontains the template method tasnplate clasg. A hook

class quasi parameterizes tlmplate class. Note that this is cantext-dependent
distinction egardless of thecomplexity of these two kinds of classes. As a
consequence, the essential set of flexibility construction principles can ‘oed desim
considering all possible combinations between these two kinds of classes. As template
and hook classes can have any complexity, the construction principles discussed below
scale up. So the domain-specifengantics of templatandhook classesafle out to

show the clear picture of how to achieve flexibility in frameworks.

3.2 Unification versus separation patterns

In case the template and hook classes are unified in one classTegille&igure 2(a),
adaptations can only t#one by mheritance. Thusidaptationsequire an application
restart.

TH T > H

(a) (b)

Fig. 2. (a) Unification and (b) separation of template and hook classes.

Separating template and hook classes is equal to (abst@milyling objects of these
classes so that the behavior af abject can benodified by composition, that is, by
plugging in specifitd objects.

The directed association b&tenT andH expresses that @ object refers to am

object. Such an association becomesessary as & object has toed mesages to

the associatedl object(s) in order to invoke the hook methods. Usually armrinst
variable in T maintains such a relation. Other possibilities are global variables or
temporary relations by passing object references via method parameters. As the actual
coupling betweef andH objects is an irrelevant imgrnentation detail, this issue is

not discussed in further detail. The same is true for the semanjicsssed by an

association. For example, whether the object association indicatesar is part of
relation depends on the specific contewtl need not beistinguished in the realm of
these core construction principles.

A separation of templatand hook classes also forms theepondition ofrun-time
adaptationsthat is, subclasses ifare defined, instantiated and plugged ihtobjects
while an application is running. Gamma et al. $8H Pree [16] discus®me useful
examples.

3.3 Recursive combination patterns

The template class can also be a descendant of the hook class (see Fjyulre tBga
degenerated vsion, templateand hook classes are ified (see Figure 3. The
recursive compositions have in common that they allow building up directed graphs of
interconnected objés. Furthermore, a certain structure of the template methods,
which is typical for these compositions, guarantees the forwarding of messages in the
object graphs.

The dfference baween the simple separation @niplateand hook classesand the
more sophisticated recursive separation is that the playground of adaptatoiggh thr
composition is enlged. Instead of simply pyging two objects together in a
straightforwardmanner, whole directed graphs of objecen be composed. The
implications are discussed in detail in [15, 16, 17].

>
—{ ™ |

v

(® (b)

Fig. 3. Recursive combinations of template and hook classes.

3.4 Hooks as name designators of GoF pattern catalog entries

Below we assume that the reader is familiar with the patterns in the pionEairgg
of-Four catalog [8]. Numerous entries in the GoF catalog represent sama#wprks,

that is, fameworksconsisting of a few classes, that apply the essential construction
patterns in various more or les®main-independensituations. So these catalog
entries are helpful when designing frameworks, as they illustrate typical hook
semantics. In general, the names of the catalog entries are closely related to the
semantic aspects that are kept flexible by hooks.

Patterns based on émplate-hook separation. Many of the famework-
centered catalog entries rely on a separatiormfptateandhook classessge Figure

1(b)). The catalog pattern Bge describes thisonstruction principle. The following
catalog patterns are based on abstract coupling: Abstract Factory, Builder, Command,
Interpreter, Observer, Prototype, Stated Stratgy. Note that the names of these
catalog patterns correspond to the semantic aspect which is kept flexibleriiciEgpa

pattern. This semantic aspect again is reflected in the name of the particular hook
method or clas. For example, in the Command pattevhen andhow a equest is
fulfilled” [8] represents the hot spotemantics. The names of the hook method
(Execute()) andhook class Command) reflect this and determine theame of the
overall pattern catalog entry.

Patterns based on recursivecompositions. The catalog entrie€omposite
(see Figure 3(a) with a 1: many relationshipneen T andH), Decorator (see Figure
3(a) with a 1:1 relationship betwe&randH) andChain-of-Responsibilitysee Figure
3(b)) correspond to the recursive template-hook combinations.

4 How to find domain-specific patterns

Hot spot identification in the early phases (eg, in the realneafirements analysis)
should become an explicit activity in tldevelopment prcess.There are two reasons

for this: Design patterns, presented in a catalog-like form, mix construction principles
and domain specific semantics as sketched above. Of course, it does not help much, to
just split the semantics out of the design patterns and leavevrork designers alone

with bare-boneconstruction principles. Insad, theseonstruction principles have to

be combined with theesnantics of the domain for which aafneworkhas to be
developed. Hot spotdentification provides this information. Figure 4tlmes the
synergy effect of essential construction principles paired withmain-specific hot

spots. The result is design patterns tailored to the particular domain.

essential framework hot spot semantics

construction principles (eg, captured in hot
spot cards)

N/

domain-specific
design patterns

Fig. 4. Essential construction principles + hot spots = domain-specific design patterns

Hot spot identification can be supported by hot spot cardejranunicationvehicle
between domain experts and software developers. Pree [16, 17] presents the concept of
hot spot cards and detailed case studies where they are applied.

A further reason why explicit hot spot identification helpan be deved from the
following observations of influencing factors in real-worldnfrework development:
One seldom has two or more similar system$atd thatcan be studiedegarding

their commonalities. Typically, one too specific system forms the basisroédvork
development. Furthermore, commonalities should by far outweigh the flexji#etas
of a framework. If there are not sifjpantly more standardized (=dzen) spots than
hot spots in a framework, the core benefit afirfework ¢chnology, that is, having a
widely standardized architecture, diminishes. As a consequemtssirig on hot spots
is likely to be more successful than trying to find commonalities.

5 Outlook

Are patterns just a hype? Lewet al. [14] view the pattern movement from the
perspective of frameworks as part of the evolution of this technology: “Patteriss

one of the most recent fads to hit thanfieworkcamp.... Expect morebuzzwords to
appear on the haon.” Because patternsave become theogue in the software
engineeringcommunity, the term is used nowherever possible, adorningven
project management or organizational work. So the genericity of the term pattern
might be the reason that patterns are found everywhere, a fact whetaided as a
clear indication of a hype.

Nevertheless, we view pattern catalogs, in particular the GoF-catalog, as important
first step twards a more syasmatic construction of flexible object-oriented
architectures. There is ndoubt that organizational measures are at leasglly
important to be successful as framework developmentines a radical departure from
today’s project culture. Goldberg aRlibin [10] discuss this in detawithout using

the term pattern for these management issues.

Probably, we shouldead the ecentbooks published by the building architect
Christopher Alexander [2] in order to predict what will happen to software patterns. He
states that the cataloging of architectural styles did not really help architects to come
up with buildings that have what hellsaa quality without a name. Aeduction to

very few principles, all related to the concept‘cénter”, allow the generation of this
quality without a name. Let us wait and see what this means in the realm of software.

3] References

1. Ackermann P. 1996).Developing Object-Oriented Multimedia SofterarBased
on the MET++ Application Frameworldeidelberg: dpunkt.Verlag
2. Alexander C. (1997Yhe Nature of OrdeNew York: Oxford University Press

3. Alexander C. 1979). The Timeless Way of BuildingNew York: Oxford
University Press

4. Alexander C., Iskiawa S., Silvestein M., Jacobson M., Fiksdahl-King I. and
Angel S. (1977)A Pattern LanguageNew York: Oxford University Press

5. Apple Computer (1989MacApp Il Programmer’s GuideCupertino, CA: Apple
Computer, Inc.

6. Coplien J. and Schmidt D. @Y (995). Pattern Languages of Program Design
Conference Proceedings. Reading, Massachusetts: Addison-Wesley

7. Coplien J.0O. (1992)Advanced C++ Progamming Stylesand Idioms Reading,
Massachusetts: Addison-Wesley

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

Gamma E., Helm R., Johnson R., Vlissides J. (199%¢sign
Patterns—Elements of Reusable Object-Oriented SoftwReading, MA:
Addison-Wesley.

Gamma E. (1991)Objektorientierte Software-Entwicklung am Beispiel von
ET++: Klassenbibliothek, Werkzeuge, Desjgdoctoral thsis, University of
Zirich, 1991; published by Springer Verlag, 1992.

Goldberg A., Rubin K. (19955ucceeding with Objects—D&ion Frameworks
for Project ManagemenReading, Massachusetts: Addison-Wesley

Helm R., Holland 1.M.and Gangopadhyay D.1090). Contracts: specifying
behavioral compositions in object-oriented systemsPrbteedings oODOPSLA
‘90, Ottawa, Canada

Johnson R.E. (1992). Documenting frameworks using patterRsodeedings of
OOPSLA ‘92 Vancouver, Canada

Krasner G.E. an&ope S.T. (1988). A cookbook for using thModel-View-
Controller user interface paradigm Smalltalk-80.Journal of Object-Oriented
Programming 1(3)

Lewis T., Rosenstein L., Pree W., Wamd A.,Gamma E., Calder PAndert
G., Vlissides J., Schmucker K. (1998pject-Oriented Application Frameworks
Manning Publications/Prentice Hall

Pree W. (1995)Design Patterns for Object-Oriented Software Development
Reading, MA: Addison-Wesley/ACM Press

Pree W. (1996Framework PatternsNew York City: SIGS Books

Pree W. (1997)Komponentenbasierte Softwareentwicklung mameworks
Heidelberg: dpunkt.Verlag

Schmucker K. (1986)0Object-Oriented Programming for the Macintosh
Hasbrouck Heights, NJ: Hayden

Taligent (1994). Taligent's Guide to Designing ProgramsReading,
Massachusetts: Addison-Wesley

Weinand A., Gamma E., Marty R. (1988)ET++ - An Object-Oriented
Application Framework in C++ OOPSLA'88, Special Issue of SIGPLAN
Notices, Vol. 23, No. 11.

Wilson D.A., Rosenstein L.S. arhafer D. 1{990). Programming with
MacApp.Reading, Massachusetts: Addison-Wesley

