
Integration of Object-Oriented Software
Development and Prototyping: Approaches

and Consequences
Wolfgang Pree

Department of Computer Science, Washington University
One Brookings Drive, St. Louis, Missouri 63130, U.S.A.

wolfgang@amadeus.wustl.edu

C. Doppler Laboratory for Software Engineering
Johannes Kepler University of Linz, Austria

Abstract. Although object-oriented application frameworks like MacApp [13], AppKit [8] and
ET++ [12] substantially ease the building of graphic, direct-manipulation user interfaces, the level
of abstraction is considered to be too low to support prototyping such interfaces in a comfortable
way. Thus we implemented a user interface prototyping tool based on an object-oriented
application framework.

The most important part of a software prototype is its dynamic behavior. On the basis of the tool
mentioned above we discuss several ways in which means of adding dynamic behavior to a user
interface prototype can be smoothly combined in one tool, in particular combining conventional
and object-oriented software. Finally, we categorize user interface prototyping tools available today
according to the concepts they offer for dynamic behavior specification.

Keywords: graphic direct-manipulation user interfaces, prototyping, object-oriented program-
ming, application frameworks, multi-paradigm systems, C++

INTRODUCTION

We presuppose that the reader is familiar with object-oriented concepts (independent of a specific language):
encapsulation, data abstraction, inheritance, polymorphism and dynamic binding, as well as with principles of
graphic user interface application frameworks like MacApp, AppKit and ET++.

Such user interface frameworks offer several advantages: User interface look–and–feel standards are “wired” into
the framework components. Furthermore, experience has proven that writing a complex application based on an
application framework can result in a reduction in source code size of 80% and more compared to software
written with the support of conventionally implemented libraries.

Apart from this enormous code reduction, application frameworks have other important benefits: the abstraction
level is raised, and a standardization is achieved in terms of both the user interface and the code structure.
However, the abstraction level of an application framework is considered to be too low to support prototyping in
a comfortable way. Implementing applications with a framework absolutely requires specialized programming
ability (especially in object-oriented programming). Furthermore, the programmer must become familiar with
the particular application framework—a time investment that cannot be neglected.

This fact is contrary to the philosophy of prototyping. Therefore we implemented DICE1 [9, 10] (Dynamic
Interface Creation Environment) for/with the application framework ET++ in order to extend this tool in the
direction of prototyping. The subsequent section describes several ways to specify dynamic behavior as offered by
DICE. What sets DICE apart from other available prototyping tools is that it elegantly combines commonly
used concepts to add dynamic behavior to a prototype. Furthermore, due to its object-oriented implementation
DICE’s specification component is extensible in a straightforward fashion.

We implemented DICE with the application framework ET++ for the following reasons: Compared to other
available application frameworks, ET++ was the cleanest object-oriented implementation, based on a small set of

1 This project was supported by Siemens AG Munich

basic mechanisms. ET++ provides a homogenous object-oriented class library that integrates user interface
building blocks, basic data structures, and high level application components. ET++ was implemented in C++
and runs under UNIX and either SunWindows, NeWS, or the X11 window system. The design and
implementation of ET++ is described in detail in [4, 11, 12].

ADDING FUNCTIONALITY TO A DICE PROTOTYPE

Prototyping is a paradigm that is well established in research and practice for enhancing the Software Life Cycle
and improving software quality. There are various publications discussing definitions of prototyping in depth
(e.g., [2, 3, 9]). User Interface Prototyping in particular is important for the development of applications that
have graphic direct-manipulation user interfaces by providing better requirement definitions. Prototyping this
kind of user interfaces with proper tools can significantly reduce the implementation effort (especially if the
prototype can be enhanced to the final product).

It is not enough to just describe screen layouts, since the most important aspect of a user interface prototype is
its dynamic behavior. In order to support evolutionary prototyping it should be possible to portray the dynamic
behavior of a system and at the same time to enhance the prototype to an accomplished application. For this
purpose most tools available today provide interfaces to procedural languages or some kind of an integrated
procedural language.

DICE supports the graphic specification of the (static) user interface layout similar to other available tools: User
interface elements offered in a palette (e.g., action button, labeled radio/toggle button, editable text field, non-
editable text field, menu, text subwindow—a subwindow containing a full-fledged text-editor, list subwindow—a
subwindow containing a list of selectable text items) are placed into windows simply by dragging them from a
palette to the appropriate window. Attributes of interface elements (like the text displayed inside an action
button) are defined in dialog boxes. For example, Figure 1 shows the attribute specification of an action button
labeled "Stop".

In order to enhance a prototype’s functionality DICE offers three possibilities:

• Without programming: Interface elements communicate with one another by sending predefined messages.

• With conventional or object-oriented programming: A protocol was developed that allows the prototype to be
connected with other UNIX processes using one of UNIX’s Interprocess Communication mechanisms.

• With object-oriented programming: Subclasses of ET++ classes can be generated. Application-specific
behavior is added in subclasses of the generated classes.

DICE either operates in a specification mode or a test mode. DICE lets the user transform the specification of a
prototype (its static and dynamic behavior) into an operational one within a neglectable amount of time (a
fraction of a second on a SUN Sparc Station 1+).

Figure 1: Cash Dispenser prototype (in specification mode)

Predefined Messages

Each user interface element has certain messages assigned that it “understands”: For instance, the messages
“Open” and “Close” are assigned to a window. All other interface elements understand at least “Enable” and
“Disable”. In addition, text subwindows, non-editable text fields and editable text fields change their text if they
receive a “SetText(...)” message. A list subwindow switches its list if it receives a “SetList(...)” message.
Labeled radio and toggle buttons alter their state depending on the parameter value of a “SetState(...)” message.

DICE realizes state transitions (in finite automata terminology) in the following way: From each element that
can be activated (buttons and menu items), any number of messages to other elements can be specified by means
of DICE’s Message Editor (see below). If the prototype is tested (i.e., the prototype specification is transformed
into an operational prototype) and an interface element is activated in the test mode, the messages specified for
that element are sent to their receivers. They effect the corresponding change(s) (=state transition(s)) in the user
interface. Thus rudimentary dynamics are realized without programming effort.

Let us take a simple cash dispenser prototype (see Figure 1) as an example. We want the display (¿ in Figure 1)
to show the text “Oops—Stop Button Pressed” when the button labeled “Stop” is pressed. To specify this
functionality, one presses the “Link...” button in the attribute sheet (= the dialog box where attributes of the
selected user interface element can be edited) of the “Stop” button (see Figure 1). (We assume that the component
name of the display field is “Display” and that the button labeled “Stop” has the component name “STOP”.) By
means of DICE’s Message Editor (see Figure 2), the desired dynamic behavior can then be defined for the “Stop”
button (i.e., that the message “SetText(...)” is to be sent to the non-editable text field “Display” when the
“STOP” button is pressed—the button with the component name “STOP” as its sender (see ¿ in Figure 2)).
After the button “Set Up Link” of the Message Editor (see Figure 2) is pressed the appropriate text string has to
be provided as parameter of the message “SetText(...)” by means of a text editor.

The left list (“Target Objects”) in the Message Editor displays component names of already existing user
interface elements. After a component name is selected in the left list, all messages that are understood by the
selected user interface element are displayed in the list “Possible Messages”. The right list of already defined
messages shows message names together with the component names of their receivers (in our example the
message “Disable”, which is to be sent to the button with the component name “OkButton”, is already defined,
the button with the component name “STOP” being the sender). After the “Set Up Link” button is pressed as
demonstrated in Figure 2 and the appropriate text string is specified, the message “SetText(...)” (to be sent to the
component named “Display”) will be added to the list of already defined messages.

Connection of a Prototype with Other UNIX Processes

Algorithmic components of a DICE prototype can be implemented in any formalism and communicate with the
user interface prototype specified with DICE by means of a simple protocol that is described below. The
integration requires no code generation for the user interface part and thus no compile/link/go cycles. An arbitrary
number of components implemented in different formalisms can be connected with a user interface prototype that
is specified and tested within DICE.

Figure 2: DICE’s Message Editor

Communication Concept: Since DICE is implemented on UNIX systems, the UNIX Interprocess
Communication mechanisms (e.g., sockets, shared memory) are used for interprocess communication of indepen-
dent processes (see Figure 3). The interface specified with DICE and the process(es) interacting with the interface
form a UIMS (User Interface Management System) with mixed control [1, 5]. This means that an application’s
“work” is accomplished by various loosely coupled parts of a software system. In case of DICE a DICE user
interface prototype forms all visible parts of the user interface and maybe some basic functionality specified by
means of predefined messages. Other functionality may be spread over several system parts that are coupled with
the user interface by a simple protocol as described below.

UNIX
Process

User
Interface

Figure 3: Connection between a user interface prototype and an arbitrary process

Communication Protocol

We illustrate this protocol as far as it is necessary to understand DICE’s interprocess communication concept.

User Interface Prototype -> Connected Process: If a user interface element of a protoype is activated in DICE’s
test mode (activatable user interface elements are all kinds of buttons, text items in a list subwindow, and menu
items), an element identifier and its value are sent to the connected process(es) in the following format:
identifier=value The identifier is usually the component name of the activated element. If a menu item is
selected, the identifier is the component name of the user interface element the menu is part of (e.g., a list
subwindow) concatenated with a dot (“.”) and the text of the selected menu item. If a text item in a list
subwindow is selected, the identifier consists of the component name of the list subwindow concatenated with a
dot (“.”) and the text of of the selected text item.

Activated action buttons, menu items, and text items in list subwindows always send TRUE as their value.
Labeled radio and toggle buttons send either TRUE or FALSE as value (depending on their state).

Connected Process -> User Interface Prototype: A connected process can ask for the value of an interface element
by sending identifier ? to the user interface prototype. If a user interface element exists that matches identifier, it
“answers” as if it had been activated using the format described above. Values of user interface elements can be
changed from the connected process by sending identifier=value to it. This allows some special changes in the
user interface, too: windows, for example, can be opened or closed using the value OPEN or CLOSE. A list
subwindow accepts EMPTY as value (to empty the list). A text string sent to a list subwindow as value means
that this text is to be appended as a list item in the correspondent list subwindow.

The communication protocol is the precondition that a user interface developed with DICE can be connected with
any conventional or object-oriented software system. E.g., the functionality of the cash dispenser specified in
Figure 1 was implemented in C. (It could also be implemented in Cobol or Fortran or what else is available.)
Necessary modifications or enhancements of the functionality are implemented in a C program. Immediately after
compiling and starting this program, the modified functionality can be tested together with the user interface
prototype (in test mode) without restarting DICE, even without switching from the test mode to the
specification mode and back to the test mode.

The development of software systems that are to be connected with the interface prototype can be supported by
available methods and tools. Pomberger [9], for instance, describes a tool that allows prototyping-oriented
incremental software development. Due to DICE’s Communication Protocol it was easy to combine this tool
with DICE.

On the other hand, it is, of course, possible to connect a user interface prototype specified and tested in DICE
with object-oriented systems developed by means of any domain-specific class libraries that might be available.

Generating Application Framework Subclasses

DICE simulates the static and dynamic behavior of a specified prototype when that prototype is tested. Thus no
code generation and no compile/link/go cycles are necessary for testing. In order to enhance the prototype by
means of the application framework ET++, DICE allows the creation of subclasses of ET++ classes. The
compilation of the generated classes results in an application which works exactly like the specified prototype.

ET++ classes

classes generated
by DICE

user-defined, application-
specific classes

...

...

...

Figure 4: Code generation concept

The generated classes need not (and should not) be changed when further functionality is added in the sense of
evolutionary prototyping. Additional functionality can be implemented in subclasses of the generated classes by
overriding or extending the corresponding dynamically bound methods (see Figure 4).

Let us look at the cash dispenser interface (Figure 1) again: When the “Ok” button in the window titled “Chase
Manhattan Bank N.Y.” is pressed, the correctness of the displayed amount should be checked. This functionality
could not be provided by DICE’s prototyping facilities. Therefore we would like to add special code in order to
implement this behavior.

DICE uses the component names of user interface elements in the generated code. Component names can be
defined for each user interface element in the corresponding attribute sheet (see, for example, Figure 1: the
component name of the button labeled “Stop” is “STOP”). We assume that the button labeled “Ok” has the
component name “OkButton” and that the window titled “Chase Manhattan Bank N.Y.” has the component name
“CashDispenser”.

So DICE generates a class CashDispenser. DICE reuses behavior implemented in the ET++ class Document by
generating CashDispenser as subclass of it. Document, for example, manages a window in which the
appropriate contents is displayed. Furthermore, the ET++ class Document has a dynamically bound method
Control which is called each time a user interface element is activated inside a window associated with a
Document object. Thus the method Control is used in the generated code to implement the behavior of user
interface elements specified by means of predefined messages. Since no behavior was specified by means of
predefined messages for the button with the component name “OkButton” the code generated by DICE is the
following:

class CashDispenser: public Document {
...
void Control(int id) {

...
case OkButton:

break; // no action
...

}
};

In order to check the correctness of the amount, we implement a class ExtCashDispenser (stands for “Extended
Cash Dispenser”). The presented code fragment is simplified in order to stress the essential idea of adding
functionality in subclasses of generated classes.

class ExtCashDispenser: public CashDispenser {
...
void Control(int id) {

...

case OkButton:
int disp=Display->Val();
if (AmountOk(disp))

. . .
break;

...
CashDispenser::Control(id);

}
};

To sum up, this kind of code generation separates changes of the user interface from hand-coded functionality as
far as possible. For instance, if the user interface layout is changed, code (i.e., ET++ subclasses) must be
generated again. The user-defined classes that have been derived from the originally generated classes are not
concerned. Changes of these classes only become necessary if interface elements are removed (which would result
in extrenous code) or switched between windows of the prototype.

CATEGORIZATION OF USER INTERFACE PROTOTYPING TOOLS
Prototypes built with DICE (i.e., prototypes that are executable within DICE in the test mode as well as ET++
applications generated from the prototype specification) are finite automata consisting of a finite number of
states (the static layout of user interfaces) and state transitions (the dynamic behavior). We call this basic
structure of a prototype its application model.

Applications built with state-of-the-art application frameworks are typically infinite automata: states and state
transitions are described in classes from which an arbitrary (and theoretically unlimited) number of instances can
be created. So the number of states and state transitions is not limited. For instance, a text editor application
may have an arbitrary number of documents (= windows) in which text can be edited. Though the windows of
one such text editor can be specified with DICE (e.g., by means of the text subwindow), the prototype as well as
the eventually generated application have only the specified windows—the text editor application is not
instantiable.

Thus the underlying application model of DICE prototypes and the application model of typical applications that
are built on top of state-of-the-art application frameworks differ considerably. Since DICE’s application model is
a subset of the application model of a modern user interface framework, it is easy to generate subclasses of such
a framework (ET++ in case of DICE), so that the transformation of the generated classes into an executable
program results in an application which works exactly like the prototype specified with DICE. In order to project
DICE’s application model to an application framework, the generated classes have to eliminate many
mechanisms provided by the framework classes: in ET++, for example, the complete document management
done in class Application becomes superfluous.

Abstraction Level of Dynamic Behavior Specification

In general, the abstraction level of the specification of dynamic behavior determines whether the application
model of the specified prototype can correspond to the application model of typical framework applications. User
interface prototyping tools known today that allow the specification of dynamic behavior on an abstraction level
higher than that of a programming language rely on the concept that applications with graphic, direct-
manipulation user interfaces are finite automata—an application model that does not match that of modern
application frameworks. The main reason for this fact is that the application model represented by finite
automata can be specified with graphic editors in an easy and intuitive way.

The more sophisticated application models of modern application frameworks would require other graphic-
oriented specification techniques. Such visual programming editors have not reached the maturity to allow use in
this context [7]. NeXT Interface Builder [8] supports the building of applications that adhere to the application
model of a modern application framework (AppKit) at the cost of specifying dynamic behavior on the
programming language level (At first glance, the possibility offered by NeXT Interface Builder seems to be
identical with predefined messages in DICE, but there is one crucial difference: In NeXT Interface Builder
message connections between objects (called sender and target in this context) are method calls of the target
object issued by an activated sender object. The messages that objects “understand” must be implemented in
classes.)

Supported Application Area

Another important issue of user interface prototyping has to be taken into consideration, too: Many commercial
data processing applications heavily rely on database management systems. Evolutionary prototyping of
applications belonging to this category could benefit a lot if the user interface prototyping tool or the generated
executable prototypes could be integrated with a (relational or object-oriented) database management system.
Tools that allow user interface prototyping and the development of a database management system are often
called fourth generation systems [6]. Though the term fourth generation system has not been standardized yet, we
give a possible definition of such a system: fourth generation systems are built around a database management
system and enable the developer to specifiy/implement not only the user interface layout but also data models,
reports and consistency rules on a high abstraction level. They typically provide standard search and sort facilities
and procedural languages for implementing dynamic behavior.

If a user interface prototyping tool is used within a fourth generation system the kind of code generation (based
on a conventionally implemented toolkit or an application framework) is almost irrelevant because the user
interface of commercial data processing applications (often called information systems) can be completely
specified with available user interface prototyping tools in most cases: text fields, buttons, lists and text editors
are sufficient for this application category. The system developer usually does not need (user interface)
application framework classes in order to enhance a prototype. Moreover, the finite application model of almost
all user interface prototyping tools available today meets the requirements of information systems: it is, for
example, not desirable to instantiate an arbitrary number of input masks that are used to enter data into a
database.

SUMMARIZING REMARKS

Depending on the level of abstraction of the specification of dynamic behavior we can divide high-level user
interface prototyping tools into two categories: tools which support prototyping of information systems and
tools that help to reduce the implementation effort if an application framework is used. All tools which are based
on the finite automata application model are especially suited for prototyping information systems and thus
belong to the first category. Their application model is only a subset of the infinite automata application model
of user interface application frameworks. Thus the development of software systems with the infinite application
model of user interface application frameworks is not supported.

An example of a tool that belongs to the second category is NeXT Interface Builder. Research (especially in
visual programming) is necessary in order to allow the specification of dynamic behavior on an abstraction level
higher than that of a programming language and to retain the application model of a state-of-the-art user interface
application framework.

REFERENCES

1. Betts B., et al.: Goals and Objectives for User Interface Software; in: Computer Graphics, Vol. 21, No. 2,
April 1987.

2. Budde R. et al.: Approaches to Prototyping; in Proceedings of the Working Conference on Prototyping,
Namur, October ‘83, Springer 1984.

3. Floyd, C.: A Systematic Look at Prototyping; in: Approaches to Prototyping, Springer, 1984.

4. Gamma E., Weinand A., Marty R.: Integration of a Programming Environment into ET++: A Case
Study; Proceedings of the 1989 ECOOP, July 1989.

5. Hayes P.J., Szekely P.A., Lerner R.A.: Design Alternatives for User Interface Management Systems
Based on Experience with COUSIN; in: Human Factors in Computing Systems: CHI’85 Conference
Proceedings, Boston, Mass., April 1985.

6. Holloway S.: Background to Forth Generation; in Fourth Generation Languages and Application
Generators, The Technical Press, 1986.

7. Myers B.: User-Interface Tools: Introduction and Survey; IEEE Software, 6(1), January 1989.

8. NeXT, Inc.: 1.0 Technical Documentation: Concepts; NeXT, Inc., Redwood City, CA, 1990.

9. Pomberger G., Bischofberger W., Kolb D., Pree W., Schlemm H.: Prototyping-Oriented Software Devel-
opment, Concepts and Tools; in Structured Programming Vol.12, No.1, Springer 1991.

10. Pree W.: Object-Oriented Versus Conventional Construction of User Interface Prototyping Tools; PhD
thesis, Johannes Kepler University of Linz, 1991.

11. Weinand A., Gamma E., Marty R.: ET++ - An Object-Oriented Application Framework in C++;
OOPSLA’88, Special Issue of SIGPLAN Notices, Vol. 23, No. 11, 1988.

12. Weinand A., Gamma E., Marty R.: Design and Implementation of ET++, a Seamless Object-Oriented
Application Framework; in Structured Programming Vol.10, No.2, Springer 1989.

13. Wilson D.A., Rosenstein L.S., Shafer D.: Programming with MacApp; Addison-Wesley, 1990.

Trademarks:
MacApp is a trademark of Apple Computer Inc.

App Kit is a trademark of NeXT Inc.

SunWindows and NeWS are trademarks of Sun Microsystems.

UNIX and C++ are trademarks of AT&T.

